基于图像技术的电网运行态势分析及其应用Power Grid Operation Situation Analysis Based on Image Technology and Its Application
赵永良,章剑光,张永建
ZHAO Yongliang,ZHANG Jianguang,ZHANG Yongjian
摘要(Abstract):
随着电网规模日益增大,输配电网耦合程度日益加强,传统离散分析与条块管理模式将难以适应电网规模增长和精准服务的要求,迫切需要深挖电网运营数据资源,提升主动感知与精准投资能力。通过运用电网实时状态以及客户服务等多元信息的融合技术,创建多层面、多维度的数据价值挖掘模型,涵盖宏观运行态势、重点区域边缘提取、多业务叠加分析等模型,系统刻画电网运行态势发展与服务能力变化,以详实的数据、可视化的成果,更好地服务电网科学规划与精准投资,提升态势感知与主动服务能力。
With the expansion of power grid and the increase coupling of distribution networks and transmission networks, traditional discrete analysis and piece combination can no longer adapt to the requirement of power grid scale growth and precise service. It is urgent to dig the grid operation data resources and enhance active perception and precise investment capacity. By using the data fusion technology of real-time state of power grid and customer service, a multi-level and multi-dimensional data value mining model is created,which consists of macro operation situation, key regional edge extraction, multi-service overlaying analysis and can systematically depict power grid operation situation development and service capacity change; besides, it can better serve scientific grid planning and precise investment, and improve situation awareness and active service capacity with the detailed data and visualized result.
关键词(KeyWords):
图像技术;运行态势;热力图;边缘提取;信息融合
image technology;operation situation;thermodynamic chart;edge extraction;information fusion
基金项目(Foundation):
作者(Author):
赵永良,章剑光,张永建
ZHAO Yongliang,ZHANG Jianguang,ZHANG Yongjian
DOI: 10.19585/j.zjdl.201712016
参考文献(References):
- [1]于江锴.电网企业资产管理应用研究[J].工程技术:引文版,2016(8):00076-00076.
- [2]代红才.世界一流电网评价指标体系及定量测评研究[J].经济研究参考,2015(64):84-88.
- [3]王运明.浅谈供电企业电力营销管理总体策略[J].广西大学学报(自然科学版),2006,6(2):13-14.
- [4]李培强,李欣然,陈辉华,等.基于模糊聚类的电力负荷特性的分类与综合[J].中国电机工程学报,2005,25(24):73-78.
- [5]柳昂,邵越,金文德,等.基于海迅数据库的电网运行监控分析及预警系统[J].浙江电力,2013,32(9):50-53.
- [6]许国凯,徐展,吴忠.配电网全过程网格化管理实践[J].浙江电力,2017,36(6):39-43.
- [7]ELIAST D.Learning analytics:Definitions,processes and potential[J].Learning,2011,23(7):134-148.
- [8]HAY T,TANSLEY S,TOLLE K.The Fourth Paradigm:Data Inten-sive Scientific Discovery[M].Redmond,Washington:Mi-crosoft Research,2009.
- [9]康重庆,杨高峰,夏清.电力需求的不确定性分析[J].电力系统自动化,2005,29(17):14-19.
- [10]张震宇,吕育青,蒋锋.BP神经网络在计及气温因素的短期日负荷预测中的应用[J].浙江电力,2007,26(1):6-9.
- [11]陈耀君,朱群,姚建华,等.基于配电网设备信息系统的Web GIS技术改进研究[J].浙江电力,2016,35(3):57-60.
- [12]吴志强,叶锺楠.基于百度地图热力图的城市空间结构研究[J].城市规划,2016,40(4):33-40.
- [13]王文丽.各种图像边缘提取算法的研究[D].北京:北京交通大学,2010.
- [14]李刚,刘燕,宋雨,等.基于信息融合的电力大数据可视化预处理方法[J].广东电力,2016,29(12):10-14.
- [15]刘永丹,曾海泉,李荣陆,等.基于语义分析的倾向性文本过滤[J].通信学报,2004,25(7):78-85.
- [16]李晓露,柳劲松.可视化分析在大电网运行中的应用[J].上海电力学院学报,2015,31(6):575-580.
- [17]贾玲.变电站视频监控系统中的智能图像识别预处理技术应用[J].科技创新导报,2015,12(31):95-96.
- [18]王淼,杜毅,张忠瑞.无人机辅助巡视及绝缘子缺陷图像识别研究[J].电子测量与仪器学报,2015,29(12):1862-1869.
- [19]崔克彬,李宝树,徐雪涛,等.基于图像增强技术的电气设备热故障自动诊断与定位[J].红外技术,2014,36(2):162-167.
- [20]靳涛,辛志勇.图像识别技术在电力设备在线监测中的应用[J].才智,2013(30):281.
- [21]刘雅琴.图像边缘检测在输电线巡检中的应用[J].数字技术与应用,2013(5):138.