浙江电力

2022, v.41;No.312(04) 7-13

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于AFSA-BP神经网络的光伏功率预测方法
A Photovoltaic Power Prediction Method Based on AFSA-BP Neural Network

陈文进,朱峰,张童彦,张俊,张锋明,谢栋,茹伟,宋美雅,范强
CHEN Wenjin,ZHU Feng,ZHANG Tongyan,ZHANG Jun,ZHANG Fengming,XIE Dong,RU Wei,SONG Meiya,FAN Qiang

摘要(Abstract):

为了提高光伏输出功率的预测精度,提出一种利用AFSA(人工鱼群算法)优化BP(反向传播)神经网络的预测方法。该方法基于清洗后的数据,以相关性较高的气象数据作为输入,以光伏输出功率数据作为输出,利用AFSA全局寻优能力和内在并行计算能力优化BP神经网络的权值和阈值,训练得到基于AFSA-BP神经网络的光伏输出功率预测模型。对某光伏电站的仿真分析结果表明,相比于利用BP神经网络、遗传算法优化BP神经网络、粒子群算法优化BP神经网络,所提方法的预测结果准确度更高,与原始数据曲线的拟合程度较优,相关误差评价指标更低,训练耗时较短,能实现对光伏输出功率的快速精确预测。
In order to improve the prediction accuracy of photovoltaic output power,this paper proposes a prediction method using AFSA(artificial fish swarm algorithm)to optimize BP(back-propagation)neural network. Based on the cleaned data,the paper takes highly correlative meteorological data as input,and photovoltaic output power data as output. It uses the global optimization capabilities and inherent parallel computing capabilities of AFSA to optimize the weights and thresholds of the BP neural network. The photovoltaic output power prediction model based on the AFSA-BP neural network is obtained after training. The simulation analysis of a photovoltaic power station shows that compared with using BP neural networks, genetic algorithm optimized BP neural network,and PSO-BP network,the prediction results of this method are more accurate, the degree of fitting to the original data curve is better,the corresponding error evaluation index is lower, and the training is less time-consuming; the method can rapidly and accurately predict the photovoltaic output power.

关键词(KeyWords): 人工鱼群算法;BP神经网络;光伏发电;功率预测
AFSA;BP neural network;photovoltaic power generation;power prediction

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211SX2000ZM)

作者(Author): 陈文进,朱峰,张童彦,张俊,张锋明,谢栋,茹伟,宋美雅,范强
CHEN Wenjin,ZHU Feng,ZHANG Tongyan,ZHANG Jun,ZHANG Fengming,XIE Dong,RU Wei,SONG Meiya,FAN Qiang

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享