基于改进YOLOv5的轻量化绝缘子缺陷检测算法A lightweight insulator defect detection algorithm based on the improved YOLOv5
季世超,曲星合,宋庆彬,肖杨明,缪正,李宇航,邹国平
JI Shichao,QU Xinghe,SONG Qingbin,XIAO Yangming,MIAO Zheng,LI Yuhang,ZOU Guoping
摘要(Abstract):
无人机巡检已经成为当下输电线路巡检的主流方式,绝缘子缺陷的检测是无人机巡检中的重要环节。因此,提出了一种基于改进YOLOv5的轻量化绝缘子缺陷检测算法。首先,使用轻量型的Ghost卷积代替普通卷积;然后,使用重复加权BiFPN(双向特征金字塔网络)替换原特征提取网络,提高网络对不同尺度的特征提取能力;最后,引入CA(坐标注意力机制)提高了主干特征提取效率。实验结果表明,绝缘子检测的平均精度值提升了1.7个百分点,模型大小减少了13.1%,改进后的算法模型在提升检测精度的同时更加轻量化,可实现绝缘子缺陷的快速检测。
Unmanned aerial vehicle(UAV) inspections now have emerged as a predominant approach for the examination of transmission lines, with a pivotal focus on the detection of insulator defects. In this context, a lightweight insulator defect detection algorithm, founded on the improved YOLOv5, is introduced. Firstly, the lightweight Ghost convolution is employed to replace conventional convolution. Subsequently, the original feature extraction network is replaced with a repeated weighted bidirectional feature pyramid network(BiFPN) to bolster feature extraction capability across various scales. Finally, the coordinate attention(CA) mechanism is introduced to enhance the efficiency of backbone feature extraction. Experimental results reveal a significant 1.7% enhancement in the average precision of insulator detection, accompanied by a 13.1% reduction in the model's size. This refined algorithm model not only elevates detection accuracy but also streamlines its footprint, thereby enabling more efficient and rapid insulator defect detection.
关键词(KeyWords):
输电线路;绝缘子;缺陷检测;YOLOv5
transmission line;insulator;defect detection;YOLOv5
基金项目(Foundation): 国网浙江省电力有限公司科技项目(2021-HUZJTKJ-06)
作者(Author):
季世超,曲星合,宋庆彬,肖杨明,缪正,李宇航,邹国平
JI Shichao,QU Xinghe,SONG Qingbin,XIAO Yangming,MIAO Zheng,LI Yuhang,ZOU Guoping
DOI: 10.19585/j.zjdl.202312008
参考文献(References):
- [1] MADUAKO I,IGWE C F,ABAH J E,et al.Deep learning for component fault detection in electricity transmission lines[J].Journal of Big Data,2022,9(1):1-34.
- [2]缪希仁,刘志颖,鄢齐晨.无人机输电线路智能巡检技术综述[J].福州大学学报(自然科学版),2020,48(2):198-209.MIAO Xiren,LIU Zhiying,YAN Qichen. Review on UAV intelligent technology for transmission line inspection[J]. Journal of Fuzhou University(Natural Science Edition),2020,48(2):198-209.
- [3]张晶焯,佘楚云,伍国兴,等.基于增强特征金字塔和可变形卷积的绝缘子缺陷检测[J].电力工程技术,2021,40(4):155-160.ZHANG Jingzhuo,SHE Chuyun,WU Guoxing,et al.Insulator defect detection based on enhanced feature pyramid and deformable convolution[J].Electric Power Engineering Technology,2021,40(4):155-160.
- [4]刘云鹏,张喆,裴少通,等.基于深度学习的红外图像中劣化绝缘子片的分割方法[J].电测与仪表,2022,59(9):63-68.LIU Yunpeng,ZHANG Zhe,PEI Shaotong,et al.Faulty insulator segmentation method in infrared image based on deep learning[J].Electrical Measurement&Instrumentation,2022,59(9):63-68.
- [5] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
- [6]魏业文,李梅,解园琳,等.基于改进Faster-RCNN的输电线路巡检图像检测[J].电力工程技术,2022,41(2):171-178.WEI Yewen,LI Mei,XIE Yuanlin,et al. Transmission line inspection image detection based on improved FasterRCNN[J].Electric Power Engineering Technology,2022,41(2):171-178.
- [7] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot MultiBox detector[C]//Computer Vision-ECCV2016:14th European Conference,October 11-14,2016,Amsterdam,The Netherlands. Cham:Springer International Publishing,2016:21-37.
- [8] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).June 27-30,2016,Las Vegas,NV,USA:IEEE,2016:779-788.
- [9] QIU Z B,ZHU X A,LIAO C B,et al.Detection of transmission line insulator defects based on an improved lightweight YOLOv4 model[J]. Applied Sciences,2022,12(3):1207.
- [10]杨焰飞,曹阳.改进YOLOv3的无人机拍摄图玻璃绝缘子检测[J].计算机工程与应用,2022,58(3):259-265.YANG Yanfei,CAO Yang. Detection of glass insulators in images taken by drones based on improved YOLOv3[J].Computer Engineering and Applications,2022,58(3):259-265.
- [11]程海燕,翟永杰,陈瑞.基于Faster R-CNN的航拍图像中绝缘子识别[J].现代电子技术,2019,42(2):98-102.CHENG Haiyan,ZHAI Yongjie,CHEN Rui. Faster RCNN based recognition of insulators in aerial images[J].Modern Electronics Technique,2019,42(2):98-102.
- [12]虢韬,杨恒,时磊,等.基于Faster RCNN的绝缘子自爆缺陷识别[J].电瓷避雷器,2019(3):183-189.GUO Tao,YANG Heng,SHI Lei,et al.Self-explosion defect identification of insulator based on faster rcnn[J].Insulators and Surge Arresters,2019(3):183-189.
- [13]郝帅,杨磊,马旭,等.基于注意力机制与跨尺度特征融合的YOLOv5输电线路故障检测[J].中国电机工程学报,2023,43(6):2319-2331.HAO Shuai,YANG Lei,MA Xu,et al. YOLOv5 transmission line fault detection based on attention mechanism and cross-scale feature fusion[J]. Proceedings of the CSEE,2023,43(6):2319-2331.
- [14]汪权,易本顺.基于Gaussian YOLOv3的航拍图像绝缘子缺陷识别[J].激光与光电子学进展,2021,58(12):254-260.WANG Quan,YI Benshun. Insulator defect recognition in aerial images based on Gaussian YOLOv3[J]. Laser&Optoelectronics Progress,2021,58(12):254-260.
- [15]高伟,周宸,郭谋发.基于改进YOLOv4及SR-GAN的绝缘子缺陷辨识研究[J].电机与控制学报,2021,25(11):93-104.GAO Wei,ZHOU Chen,GUO Moufa. Insulator defect identification via improved YOLOv4 and SR-GAN algorithm[J].Electric Machines and Control,2021,25(11):93-104.
- [16] HAN K,WANG Y H,TIAN Q,et al. GhostNet:more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). June 13-19,2020,Seattle,WA,USA:IEEE,2020:1577-1586.
- [17] TAN M X,PANG R M,LE Q V.EfficientDet:scalable and efficient object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),June 13-19,2020,Seattle,WA,USA:IEEE,2020:10778-10787.
- [18] HOU Q B,ZHOU D Q,FENG J S.Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),June 20-25,2021,Nashville,TN,USA:IEEE,2021:13708-13717.