基于ICEEMDAN的钢铁行业负荷预测方法A load forecasting method for steel industry based on ICEEMDAN
张思,李洋,王波,朱耿,贺旭
ZHANG Si,LI Yang,WANG Bo,ZHU Geng,HE Xu
摘要(Abstract):
针对钢铁行业负荷预测精度不高的问题,提出了基于ICEEMDAN(改进的自适应噪声完备集合经验模态分解)的钢铁行业负荷预测方法。首先,通过ICEEMDAN将钢铁行业电力负荷分解为高、低频模态分量。其次,基于GA(遗传)算法筛选出高、低频分量的主要影响因素,并采用PSO-BP(粒子群优化-反向传播神网络)算法分别构建高、低频分量预测模型。最后,将各组分量的预测结果迭代重组,得到最终的负荷预测结果。算例分析结果表明,相较于其他预测方法,该方法的预测误差小,精度较高。
In response to the challenge of low accuracy in load forecasting for the steel industry, a load forecasting approach is introduced based on ICEEMDAN(improved complete ensemble empirical mode decomposition with adaptive noise). Firstly, ICEEMDAN is employed to decompose the electricity load in the steel industry into high and low-frequency modal components. Subsequently, the genetic algorithm(GA) is used to identify the primary influencing factors of the components. The PSO-BP(particle swarm optimization-backpropagation neural network) algorithm is then applied to construct prediction models for the high and low-frequency components. Finally, the forecasted results of each component are iteratively recombined to derive the ultimate load forecasting outcomes. Case analysis results indicate that this approach exhibits minimal prediction errors and higher precision.
关键词(KeyWords):
冲击负荷;负荷预测;ICEEMDAN模型;遗传算法;PSO-BP模型
impact load;load forecasting;ICEEMDAN model;GA;PSO-BP model
基金项目(Foundation): 国家自然科学基金(72371101);; 国网浙江省电力有限公司科技项目(B311NB220001)
作者(Author):
张思,李洋,王波,朱耿,贺旭
ZHANG Si,LI Yang,WANG Bo,ZHU Geng,HE Xu
DOI: 10.19585/j.zjdl.202405004
参考文献(References):
- [1]胥永兰.大气污染防治政策下区域钢铁行业用电量智能预测研究[D].北京:华北电力大学,2016.XU Yonglan.The intelligent prediction of regional steel industry power consumption under the new policy for atmospheric pollution control[D].Beijing:North China Electric Power University,2016.
- [2]陈国栋.电网规划中负荷预测的分析与研究[D].长沙:湖南大学,2008.CHEN Guodong.The analysis and study of load forecasting in power network planning[D].Changsha:Hunan University,2008.
- [3]唐晓,陈芳,许强,等.改进鲸鱼算法优化的多维度深度极限学习机短期负荷预测[J].山东电力技术,2023,50(1):1-7.TANG Xiao,CHEN Fang,XU Qiang,et al. Short-term load forecasting based on multi-dimensional deep extreme learning machine optimized by improved whale algorithm[J].Shandong Electric Power,2023,50(1):1-7.
- [4]鲍海波,吴阳晨,张国应,等.基于特征加权Stacking集成学习的净负荷预测方法[J].电力建设,2022,43(9):104-116.BAO Haibo,WU Yangchen,ZHANG Guoying,et al.Net load forecasting method based on feature-weighted stacking ensemble learning[J]. Electric Power Construction,2022,43(9):104-116.
- [5]徐蕙,陈平,李海涛,等.MPSR-MKSVM电力负荷预测综合优化策略[J].电测与仪表,2022,59(1):77-83.Xu Hui,Chen Ping,Li Haitao,et al.Comprehensive optimization strategy of power load forecasting based onMPSR-MKSVM[J].Electrical Measurement&Instrumentation,2022,59(1):77-83.
- [6]李磊,林珊,贾颉辉.基于TCN-Attention神经网络的短期负荷预测[J].电力信息与通信技术,2023,21(3):10-16.LI Lei,LIN Shan,JIA Jiehui.Short-term load forecasting based on TCN-attention neural network[J]. Electric Power Information and Communication Technology,2023,21(3):10-16.
- [7]陆普凡.基于改进神经网络的电力负荷短期预测方法研究[D].南京:南京邮电大学,2022.LU Pufan. Research on short-term forecasting of power load based on improved neural network[D].Nanjing:Nanjing University of Posts and Telecommunications,2022.
- [8]于海东,刘文彬,文祥宇.基于强化学习的电动出租车充电负荷预测[J].山东电力技术,2022,49(4):7-14.YU Haidong,LIU Wenbin,WEN Xiangyu.Charging load forecast of electric taxis based on reinforcement learning[J].Shandong Electric Power,2022,49(4):7-14.
- [9]孙玉芹,王亚文,朱威,等.基于考虑气温影响的门限自回归移动平均模型居民日用电负荷预测[J].电力建设,2022,43(9):117-124.SUN Yuqin,WANG Yawen,ZHU Wei,et al.Residential daily power load forecasting based on threshold ARMA model considering the influence of temperature[J].Electric Power Construction,2022,43(9):117-124.
- [10]钟士元,张文锦,罗路平,等.基于行业聚类电量曲线分解的中期负荷预测[J].电力建设,2022,43(2):81-88.ZHONG Shiyuan,ZHANG Wenjin,LUO Luping,et al.Medium-term load forecasting based on industry clustering electricity curve decomposition[J]. Electric Power Construction,2022,43(2):81-88.
- [11]董添.基于深度学习的电力负荷模式识别与预测方法研究[D].长春:吉林大学,2022.DONG Tian. Research on electrical load pattern recognition and load forecasting based on deep learning[D].Changchun:Jilin University,2022.
- [12]任建吉,位慧慧,邹卓霖,等.基于CNN-BiLSTMAttention的超短期电力负荷预测[J].电力系统保护与控制,2022,50(8):108-116.REN Jianji,WEI Huihui,ZOU Zhuolin,et al.Ultra-shortterm power load forecasting based on CNN-BiLSTMAttention[J]. Power System Protection and Control,2022,50(8):108-116.
- [13]牛牧童,廖凯,杨健维,等.考虑季节特性的多时间尺度电动汽车负荷预测模型[J].电力系统保护与控制,2022,50(5):74-85.NIU Mutong,LIAO Kai,YANG Jianwei,et al. Multitime-scale electric vehicle load forecasting model considering seasonal characteristics[J]. Power System Protection and Control,2022,50(5):74-85.
- [14]叶剑华,曹旌,杨理,等.基于变分模态分解和多模型融合的用户级综合能源系统超短期负荷预测[J].电网技术,2022,46(7):2610-2622.YE Jianhua,CAO Jing,YANG Li,et al.Ultra short-term load forecasting of user level integrated energy system based on variational mode decomposition and multi-model fusion[J].Power System Technology,2022,46(7):2610-2622.
- [15]王晓辉,邓威威,齐旺.基于PSO-LSTM的电力负荷预测模型[J].上海节能,2022(2):164-169.WANG Xiaohui,DENG Weiwei,QI Wang. Electric power load forecasting model based on PSO-LSTM[J].Shanghai Energy Conservation,2022(2):164-169.
- [16]荀超,陈伯建,吴翔宇,等.基于改进K-means算法的电力短期负荷预测方法研究[J].电力科学与技术学报,2022,37(1):90-95.XUN Chao,CHEN Bojian,WU Xiangyu,et al.Research on short-term power load forecasting method based on improved K-means algorithm[J]. Journal of Electric Power Science and Technology,2022,37(1):90-95.
- [17]杨国华,郑豪丰,张鸿皓,等.基于Holt-Winters指数平滑和时间卷积网络的短期负荷预测[J].电力系统自动化,2022,46(6):73-82.YANG Guohua,ZHENG Haofeng,ZHANG Honghao,et al.Short-term load forecasting based on holt-winters exponential smoothing and temporal convolutional network[J].Automation of Electric Power Systems,2022,46(6):73-82.
- [18] MA S H.A hybrid deep meta-ensemble networks with application in electric utility industry load forecasting[J].Information Sciences,2021,544:183-196.
- [19]葛磊蛟,赵康,孙永辉,等.基于孪生网络和长短时记忆网络结合的配电网短期负荷预测[J].电力系统自动化,2021,45(23):41-50.GE Leijiao,ZHAO Kang,SUN Yonghui,et al.Short-term load forecasting of distribution network based on combination of Siamese network and long short-term memory network[J].Automation of Electric Power Systems,2021,45(23):41-50.
- [20]孙超,吕奇,朱思曈,等.基于双层XGBoost算法考虑多特征影响的超短期电力负荷预测[J].高电压技术,2021,47(8):2885-2898.SUN Chao,LüQi,ZHU Sitong,et al. Ultra-short-term power load forecasting based on two-layer XGBoost algorithm considering the influence of multiple features[J].High Voltage Engineering,2021,47(8):2885-2898.
- [21]林珊,王红,齐林海,等.基于条件生成对抗网络的短期负荷预测[J].电力系统自动化,2021,45(11):52-60.LIN Shan,WANG Hong,QI Linhai,et al.Short-term load forecasting based on conditional generative adversarial network[J].Automation of Electric Power Systems,2021,45(11):52-60.
- [22]朱继忠,董瀚江,李盛林,等.数据驱动的综合能源系统负荷预测综述[J].中国电机工程学报,2021,41(23):7905-7924.ZHU Jizhong,DONG Hanjiang,LI Shenglin,et al.Review of data-driven load forecasting for integrated energy system[J].Proceedings of the CSEE,2021,41(23):7905-7924.
- [23]庞传军,张波,余建明.基于LSTM循环神经网络的短期电力负荷预测[J].电力工程技术,2021,40(1):175-180.PANG Chuanjun,ZHANG Bo,YU Jianming.Short-term power load forecasting based on LSTM recurrent neural network[J]. Electric Power Engineering Technology,2021,40(1):175-180.
- [24]汲国强,汪鸿,王梦,等.基于大用户行为属性挖掘和LSSVM的钢铁行业用电量预测研究[J].智慧电力,2018,46(9):60-65.JI Guoqiang,WANG Hong,WANG Meng,et al.Electricity consumption prediction of steel industry based on behavior attribute mining of large consumers and LSSVM[J].Smart Power,2018,46(9):60-65.
- [25] DODDAMANI Y N,MALAGI R R,KAPALE U C.Multi kernel learning based sugar industry load forecasting[J].International Journal of Recent Technology and Engineering(IJRTE),2021,9(5):275-278.
- [26]杨方圆,张明理,史宇超,等.基于改进多因素灰色模型的高耗能行业负荷预测方法[J].东北电力技术,2018,39(8):27-30.YANG Fangyuan,ZHANG Mingli,SHI Yuchao,et al.Load forecasting method of high energy consuming industry based on improved multi factor grey model[J].Northeast Electric Power Technology,2018,39(8):27-30.
- [27]单体华,秦砺寒,韩江磊,等.基于FWA-LSSVR智能算法的钢铁行业用电量预测研究[J].中国电力,2016,49(增刊1):89-93.SHAN Tihua,QIN Lihan,HAN Jianglei,et al.Research on Electricity Demand Forecasting of Steel Industry based on FWA-LSSVR[J]. Electric Power,2016,49(S1):89-93.
- [28]李顺昕,秦砺寒,胥永兰,等.基于加权粒子群优化的LSSVM的钢铁企业电力负荷预测[J].华北电力大学学报(自然科学版),2014,41(6):104-108.LI Shunxin,QIN Lihan,XU Yonglan,et al.Least squares support vector machine optimized by weight particle swarm optimization algorithm for steel load forecasting[J].Journal of North China Electric Power University(Natural Science Edition),2014,41(6):104-108.