浙江电力

2019, v.38;No.277(05) 83-89

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

深度学习在电力系统中的应用研究综述
A Survey of Deep Learning Technology Application in Power System

叶琳,杨滢,洪道鉴,陈新建
YE Lin,YANG Ying,HONG Daojian,CHEN Xinjian

摘要(Abstract):

近年来,人工智能特别是深度学习技术的迅速发展,给当今社会带来了巨大变革。首先梳理了人工智能尤其是机器学习的关键及前沿技术,阐述了包括强化学习、迁移学习、生成对抗神经网络、胶囊网络和引导学习等几种典型机器学习方法的特点。然后分析了机器学习在电力系统稳定性分析领域、协调调度领域以及负荷预测领域的典型应用场景,对比了其在解决特定问题时的优势。最后对应用情况进行了概括总结,展望了其在电力系统运行领域的应用前景。
In recent years, artificial intelligence, especially deep learning technology, has developed rapidly,bringing about tremendous innovation in social technology. This paper summarizes the key and cutting-edge technologies of artificial intelligence and expounds the characteristics of typical machine learning such as reinforcement learning, migration learning, generation of anti-neural network, capsule network and guided learning; then, it analyzes the deep learning technology in the field of stability analysis, coordination scheduling and load forecasting in the power system operation, which shows its advantages in solving specific problems.Finally, the paper summarizes the application and elaborates on the future application in electric power system operation.

关键词(KeyWords): 人工智能;机器学习;强化学习;迁移学习;对抗神经网络;胶囊网络;引导学习
artificial intelligence;machine learning;reinforcement learning;migration learning;anti-neural network;capsule network;guided learning

Abstract:

Keywords:

基金项目(Foundation): 浙江省电力有限公司科技项目(5211TZ170006)

作者(Author): 叶琳,杨滢,洪道鉴,陈新建
YE Lin,YANG Ying,HONG Daojian,CHEN Xinjian

DOI: 10.19585/j.zjdl.201905013

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享