浙江电力

2004, (04)

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

一种基于神经网络的电力负荷预测方法
An Electric Load Forecast Method Based on the Neural Network

鲍正江,胡海兵

摘要(Abstract):

提出一种基于人工神经网络的电力负荷预测方法 ,该方法充分吸收了神经网络非线性逼近能力的优点。在神经网络结构设计中充分考虑了电力负荷的特点 ,并用神经网络加权最小方差模型(NNWLS)对样本进行训练。在实际预测中 ,该预测方法取得了比较高的的预测精度
The paper put forward a new load forecasting method based on Neural Network. It takes advantages of nonlinear approximating capability of Neural Network. In the architectural design of the Neural Network, the authors take into full consideration the characteristics of electric load and adopt the Neural Network Weighted Least Square (NNWLS) to train the sample sets. In practice, the method shows the high load_forecasting precision.

关键词(KeyWords): 电力负荷;负荷预测;人工神经网络
electric load; load forecasting; Neural Network

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 鲍正江,胡海兵

DOI: 10.19585/j.zjdl.2004.04.003

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享