考虑无功补偿的10 kV馈线拓扑数据驱动辨识方法A Data-driven Approach for 10 kV Feeder Topology Identification Considering Reactive Power Compensation
汪子晨,于杰,杨坚,陈新建,吴浩,鞠平
WANG Zichen,YU Jie,YANG Jian,CHEN Xinjian,WU Hao,JU Ping
摘要(Abstract):
中压配电网的拓扑结构对其运行分析与优化有着重要作用。近年来,配电网中的量测装置记录了大量稳态数据,如何利用量测数据辨识中压配电网拓扑结构成为研究重点。针对现有拓扑辨识方法未考虑馈线有无功补偿的情况,提出了考虑无功补偿的10 kV馈线拓扑辨识方法。首先,揭示了相邻节点电压降与节点间线路传输的有功功率和无功功率呈线性关系;然后,采用量测数据驱动的方式,通过线性回归误差平方和的比较,辨识10 kV馈线的末端节点和上级节点,进而通过迭代不断去除末端节点,直至剩余节点数为1;最后,利用迭代过程中产生的末端节点及上级节点信息重构馈线拓扑。算例验证了所提方法的有效性和鲁棒性。
The topology of medium-voltage distribution network plays an important role in its operation analysis and optimization. In recent years, a large amount of steady-state data has been recorded by measuring devices in distribution networks, and how to use the data to identify the topology of medium-voltage distribution network has become a research focus. Because the existing topology identification methods do not consider the reactive power compensation in the feeder, this paper proposes a data-driven approach for 10 kV feeder topology identification considering reactive power compensation. Firstly, the linear relationship between the voltage drop of adjacent nodes and the transmitted active and reactive power between nodes is revealed. Then, by comparing the square sum of the linear regression error through a data-driven approach, the end node and its upstream node of the 10 kV feeder are identified. By removing the end node, the identification can be performed again until only one node remains. Finally, the feeder topology is reconstructed with the information of the end node and its upstream node identified during the above iteration. Case studies show that the proposed method is effective and robust.
关键词(KeyWords):
配电网;拓扑辨识;无功补偿;线性回归模型;数据驱动
distribution network;topology identification;reactive power compensation;linear regression model;data-driven
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211TZ1800FJ)
作者(Author):
汪子晨,于杰,杨坚,陈新建,吴浩,鞠平
WANG Zichen,YU Jie,YANG Jian,CHEN Xinjian,WU Hao,JU Ping
DOI: 10.19585/j.zjdl.202101001
参考文献(References):
- [1]张东霞,苗新,刘丽平,等.智能电网大数据技术发展研究[J].中国电机工程学报,2015,35(1):2-12.
- [2]胡丽娟,刁赢龙,刘科研,等.基于大数据技术的配电网运行可靠性分析[J].电网技术,2017,41(1):265-271.
- [3]朱六璋.短期负荷预测的组合数据挖掘算法[J].电力系统自动化,2006,30(14):82-86.
- [4]李瑾,刘金朋,王建军.采用支持向量机和模拟退火算法的中长期负荷预测方法[J].中国电机工程学报,2011,31(16):63-66.
- [5]吴远超.基于大数据分析的窃电行为识别方法及全方位防窃电系统的研究[D].武汉:武汉大学,2018.
- [6]KURODA K,YOKOYAMA R,KOBAYASHI D,et al.An approach to outage location prediction utilizing smart metering data[C]//2014 8th Asia Modelling Symposium.Taipei,Taiwan,China:IEEE,2014:61-66.
- [7]PEPPANEN J,GRIJALVA S,RENO M J,et al.Distribution system low-voltage circuit topology estimation using smart metering data[C]//2016 IEEE/PES Transmission and Distribution Conference and Exposition(T&D).Dallas,TX,USA:IEEE,2016:1-5.
- [8]LI K.State estimation for power distribution system and measurement impacts[J].IEEE Transactions on Power Systems,1996,11(2):911-916.
- [9]WANG B,LUAN W P.Generate distribution circuit model using AMI data[C]//2014 China International Conference on Electricity Distribution(CICED).Shenzhen,China:IEEE,2014:1251-1255.
- [10]HUANG H,HU Y W,LIU S,et al.A recursive bayesian approach to load phase detection in unbalanced distribu tion system[C]//2017 IEEE Texas Power and Energy Conference(TPEC).College Station,TX,USA:IEEE,2017:1-4.
- [11]SHORT T A.Advanced metering for phase identification,transformer identification,and secondary modeling[J].IEEE Transactions on Smart Grid,2013,4(2):651-658.
- [12]BERRISFORD A J.A tale of two transformers:an algo rithm for estimating distribution secondary electric parameters using smart meter data[C]//2013 26th IEEE Canadian Conference on Electrical and Computer Engineering(CCECE).Regina,SK,Canada:IEEE,2013:1-6.
- [13]LUAN W,PENG J,MARAS M,et al.Smart meter data analytics for distribution network connectivity verification[J].IEEE Transactions on Smart Grid,2015,6(4):1964-1971.
- [14]TANG Z Y,ZHOU K P,CAO K,et al.Comparison of correlation analysis and MSD used in distribution network topology verification[C]//2018 China International Conference on Electricity Distribution(CICED). Tianjin,China:IEEE,2018:1691-1694.
- [15]LIAO Y Z,WENG Y,RAJAGOPAL R.Urban distribution grid topology reconstruction via Lasso[C]//2016 IEEE Power and Energy Society General Meeting(PESGM).Boston,MA,USA:IEEE,2016:1-5.
- [16]LIAO Y Z,WENG Y,LIU G Y,et al.Urban MV and LV distribution grid topology estimation via group lasso[J].IEEE Transactions on Power Systems,2019,34(1):12-27.
- [17]PEPPANEN J,RENO M J,BRODERICK R J,et al.Distribution system model calibration with big data from AMI and PV inverters[J].IEEE Transactions on Smart Grid,2016,7(5):2497-2506.
- [18]SOUMALAS K,MESSINIS G,HATZIARGYRIOU N.A data driven approach to distribution network topology identification[C]//2017 IEEE Manchester PowerTech. Manchester,UK:IEEE,2017:1-6.
- [19]梅睿,余昆,陈星莺.基于节点注入功率的配电网运行拓扑辨识[J].电力建设,2017,38(11):41-47.
- [20]裴宇婷,秦超,余贻鑫.基于LightGBM和DNN的智能配电网在线拓扑辨识[J].天津大学学报(自然科学与工程技术版),2020,53(9):939-950.
- 配电网
- 拓扑辨识
- 无功补偿
- 线性回归模型
- 数据驱动
distribution network - topology identification
- reactive power compensation
- linear regression model
- data-driven