考虑用户决策更新的电动汽车充换电负荷预测EV charging and battery swapping load forecasting considering user decision updating
葛乐,陆颖,王明深,邹凌岳,涂善卿
GE Le,LU Ying,WANG Mingshen,ZOU Lingyue,TU Shanqing
摘要(Abstract):
随着我国电动汽车应用场景的多元化,不同类型电动汽车的出行行为异质性及补电需求差异性增强,导致充换电负荷预测难度加大。鉴于此,提出一种计及用户决策更新与有限理性的多类型电动汽车充换电负荷预测方法。构建车辆出行链-能耗模型-选站策略融合机制,对电动私家车、出租车、公务车的出行特性与补电偏好差异化建模,实现异质车辆群体的充换电负荷预测。仿真结果表明:该负荷预测模型能够计算充换电负荷时空分布,且所提用户决策更新策略可有效节省用户补电成本,并减少用户行驶成本。
The diversification of electric vehicle(EV) applications in China has intensified the heterogeneity in travel behaviors and refueling demands across different EV types, significantly complicating charging/swapping load forecasting. To address this challenge, this paper proposes a novel load forecasting method for multi-type EVs that incorporates user decision updating and bounded rationality. A novel integrated framework is developed, combining travel chains, energy consumption models, and station selection strategies. Differential modeling of travel patterns and refueling preferences is implemented for private EVs, electric taxis, and electric official vehicles. Simulation results demonstrate that the model accurately capture the spatiotemporal distributions of charging/swapping loads. Furthermore, the decision-updating mechanism effectively reduces users' refueling costs and travel costs.
关键词(KeyWords):
电动汽车;负荷预测;充换电;用户决策
EV;load forecasting;charging and battery swapping;user decision
基金项目(Foundation): 国家自然科学基金(52477101)
作者(Author):
葛乐,陆颖,王明深,邹凌岳,涂善卿
GE Le,LU Ying,WANG Mingshen,ZOU Lingyue,TU Shanqing
DOI: 10.19585/j.zjdl.202510013
参考文献(References):
- [1]孙瑜歌,丁涛,黄雨涵,等.高比例新能源电力市场不同发展阶段划分及形态结构演进[J].高电压技术,2023,49(7):2725-2743.SUN Yuge,DING Tao,HUANG Yuhan,et al.Development stage division and morphological evolution of power market with high proportion of renewable energy[J].High Voltage Engineering,2023,49(7):2725-2743.
- [2]袁洪涛,徐潇源,严正,等.电动汽车集中充换电设施规划和优化运行研究综述[J].电力系统保护与控制,2024,52(19):157-174.YUAN Hongtao,XU Xiaoyuan,YAN Zheng,et al. Review of centralized EV charging and battery swapping facility planning and optimal scheduling[J]. Power System Protection and Control,2024,52(19):157-174.
- [3]叶宇剑,吴奕之,胡健雄,等.城市电力-交通耦合系统的联合推演与协同优化:研究综述、挑战与展望[J].中国电机工程学报,2025,45(11):4144-4163.YE Yujian,WU Yizhi,HU Jianxiong,et al. Joint prediction and coordinated optimization of integrated urban power distribution and transportation systems:literature review,challenges and prospects[J]. Proceedings of the CSEE,2025,45(11):4144-4163.
- [4]刘嘉彦,李祖坤,李畅,等.电动汽车与电力-交通耦合网互动:综述与展望[J].电力科学与技术学报,2024,39(5):12-24.LIU Jiayan,LI Zukun,LI Chang,et al.Interaction between electric vehicles and power-transportation coupled networks:current status,challenges and development trends[J]. Journal of Electric Power Science and Technology,2024,39(5):12-24.
- [5]杨帅,戴朝华,郭爱,等.考虑负荷空间均衡和充电站合作博弈的快速充电定价机制[J].电力系统自动化,2024,48(7):190-200.YANG Shuai,DAI Chaohua,GUO Ai,et al.Fast charging pricing mechanism considering load space balance and cooperative game of charging stations[J]. Automation of Electric Power Systems,2024,48(7):190-200.
- [6]范培潇,杨军,温裕鑫,等.考虑电动汽车与微电网参与的配电网双层协调控制策略[J].电力系统自动化,2024,48(19):60-68.FAN Peixiao,YANG Jun,WEN Yuxin,et al.Bi-layer coordinated control strategy of distribution network considering participation of electric vehicles and microgrid[J].Automation of Electric Power Systems,2024,48(19):60-68.
- [7]张夏韦,梁军,王要强,等.电动汽车充电负荷时空分布预测研究综述[J].电力建设,2023,44(12):161-173.ZHANG Xiawei,LIANG Jun,WANG Yaoqiang,et al.Overview of research on spatiotemporal distribution prediction of electric vehicle charging[J].Electric Power Construction,2023,44(12):161-173.
- [8]沈筱琦,方鑫,谭林林,等.基于居民出行模拟的电动汽车负荷时空分布预测[J].电力工程技术,2024,43(3):130-139.SHEN Xiaoqi,FANG Xin,TAN Linlin,et al.Prediction of spatio-temporal distribution of electric vehicle load based on residential travel simulation[J]. Electric Power Engineering Technology,2024,43(3):130-139.
- [9]丁乐言,柯松,张帆,等.考虑出行需求和引导策略的电动汽车充电负荷预测[J].电力建设,2024,45(6):10-26.DING Leyan,KE Song,ZHANG Fan,et al.Forecasting of electric-vehicle charging load considering travel demand and guidance strategy[J]. Electric Power Construction,2024,45(6):10-26.
- [10]王庆园,崔莉,王明深,等.考虑快慢充负荷特性的电动汽车调峰定价策略[J].电力工程技术,2023,42(4):31-40.WANG Qingyuan,CUI Li,WANG Mingshen,et al.Peak load regulation pricing strategy of electric vehicle considering fast and slow charging characteristics[J]. Electric Power Engineering Technology,2023,42(4):31-40.
- [11]夏鑫,钟浩,张磊,等.计及动态电价的电动汽车参与微电网调度双层优化策略[J].电力工程技术,2024,43(3):140-150.XIA Xin,ZHONG Hao,ZHANG Lei,et al.A two-layer optimization strategy for electric vehicles participating in microgrid scheduling considering dynamic electricity prices[J].Electric Power Engineering Technology,2024,43(3):140-150.
- [12]罗平,杨泽喆,张嘉昊,等.考虑多场景充电需求预测的电动汽车充电站规划[J].高电压技术,2025,51(1):368-378.LUO Ping,YANG Zezhe,ZHANG Jiahao,et al.Electric vehicle charging station planning considering multi-scene charging demand forecasting[J]. High Voltage Engineering,2025,51(1):368-378.
- [13]孙亮,申畅,朱童生,等.考虑交通流量俘获的电动汽车充电负荷预测和充电站规划[J].电力自动化设备,2024,44(7):263-270.SUN Liang,SHEN Chang,ZHU Tongsheng,et al.Electric vehicle charging load prediction and charging station planning considering traffic flow capture[J]. Electric Power Automation Equipment,2024,44(7):263-270.
- [14] XU Z Y,CAO K,LIU Y T,et al.Short-term load prediction of EV charging station based on LSTM recursion[C]//2024 IEEE 2nd International Conference on Power Science and Technology(ICPST).May 9-11,2024,Dali,China.IEEE,2024:2068-2073.
- [15]黄健,陈建红,何剑杰,等.基于GCN-LSTM的电动汽车负荷预测方法[J].浙江电力,2024,43(12):59-67.HUANG Jian,CHEN Jianhong,HE Jianjie,et al.An EV load forecasting method for using GCN-LSTM[J].Zhejiang Electric Power,2024,43(12):59-67.
- [16]赵子鋆,彭清文,邓铭,等.考虑多因素影响与误差修正的充电站负荷预测[J].浙江电力,2024,43(4):21-28.ZHAO Zijun,PENG Qingwen,DENG Ming,et al.Load forecasting for charging stations considering multiple influencing factors and error correction[J]. Zhejiang Electric Power,2024,43(4):21-28.
- [17]王长春,王果,赵倩宇,等.考虑分时电价和充电利用率特征的大型电动汽车充电站负荷短期预测方法[J].南方电网技术,2024,18(5):75-84.WANG Changchun,WANG Guo,ZHAO Qianyu,et al.A short-term load forecasting method for large scale electric vehicle charging stations considering characteristics of charging utilization rate and time-of-use electricity price[J]. Southern Power System Technology,2024,18(5):75-84.
- [18]林彦旭,高辉.基于SSA-VMD-BiLSTM模型的充电站负荷预测方法[J].广东电力,2024,37(6):53-61.LIN Yanxu,GAO Hui.Load prediction method of charging station based on SSA-VMD-BiLSTM model[J].Guangdong Electric Power,2024,37(6):53-61.
- [19]张延宇,张智铭,刘春阳,等.基于动态自适应图神经网络的电动汽车充电负荷预测[J].电力系统自动化,2024,48(7):86-93.ZHANG Yanyu,ZHANG Zhiming,LIU Chunyang,et al.Electric vehicle charging load prediction based on dynamic adaptive graph neural network[J].Automation of Electric Power Systems,2024,48(7):86-93.
- [20]邓艺璇,黄玉萍,黄周春.基于随机森林算法的电动汽车充放电容量预测[J].电力系统自动化,2021,45(21):181-188.DENG Yixuan,HUANG Yuping,HUANG Zhouchun.Charging and discharging capacity forecasting of electric vehicles based on random forest algorithm[J].Automation of Electric Power Systems,2021,45(21):181-188.
- [21] GE X L,SHI L,FU Y,et al.Data-driven spatial-temporal prediction of electric vehicle load profile considering charging behavior[J].Electric Power Systems Research,2020,187:106469.
- [22]王强,毕宇豪,高超,等.融合多方信息的电动汽车充电负荷时空分布预测[J].电力建设,2025,46(6):24-37.WANG Qiang,BI Yuhao,GAO Chao,et al.Prediction of spatiotemporal distribution of electric vehicle charging load based on multi-source information[J].Electric Power Construction,2025,46(6):24-37.
- [23] U.S.Department of transportation,federal highway administration. 2017 National Household Travel Survey[EB/OL].URL:http://nhts.ornl.gov,2017.
- [24]邹林.2023年西安市城市交通发展年度报告[R].西安:西安市自然资源和规划局,2023.
- [25]孙皓.典型历史街区居民出行行为及可持续性交通结构研究[D].西安:西安建筑科技大学,2019.SUN Hao.Study on traffic travel behavior and sustainable traffic structure in typical historic districts[D].Xi’an:Xi’an University of Architecture and Technology,2019.
- [26]温一凡.不同场景下电动汽车充电负荷预测及充电设施规划[D].西安:西安理工大学,2024.WEN Yifan.Electric vehicle charging load forecasting and charging facility planning in different scenarios[D].Xi’an:Xi’an University of Technology,2024.
- [27] YAO E J,YANG Z Q,SONG Y Y,et al.Comparison of electric vehicle’s energy consumption factors for different road types[J].Discrete Dynamics in Nature and Society,2013,2013(1):328757.
- [28] YUKSEL T,MICHALEK J J. Effects of regional temperature on electric vehicle efficiency,range,and emissions in the United States[J].Environmental Science&Technology,2015,49(6):3974-3980.
- [29]喻磊,王锐,程杉,等.基于多主体主从博弈的电动汽车充电站双层定价策略[J/OL].电力科学与技术学报,2024:1-13.(2024-11-21).https://kns.cnki.net/kcms/detail/43.1475.tm.20241121.0910.002.html.YU Lei,WANG Rui,CHENG Shan,et al. Double-layer pricing strategy of electric vehicle charging station based on multi-agent master-slave game[J/OL].Journal of Electric Power Science and Technology,2024:1-13.(2024-11-21). https://kns. cnki. net/kcms/detail/43.1475. tm.20241121.0910.002.html.
- [30]李波,吴菲,叶樊妮.基于POI数据的双流区城市用地功能识别及其混合度评价研究[J].测绘与空间地理信息,2024,47(11):41-44.LI Bo,WU Fei,YE Fanni.Research on urban land function identification and mixed degree evaluation in Shuangliu district based on POI data[J].Geomatics&Spatial Information Technology,2024,47(11):41-44.
- [31]柯松,陈磊,杨军,等.基于半动态交通流模型的电动汽车出行引导策略[J].电网技术,2023,47(8):3362-3380.KE Song,CHEN Lei,YANG Jun,et al.Electric vehicles travel guidance strategy based on semi-dynamic traffic flow state model[J].Power System Technology,2023,47(8):3362-3380.
- [32] XING Q,CHEN Z,ZHANG Z Q,et al.Modelling driving and charging behaviours of electric vehicles using a datadriven approach combined with behavioural economics theory[J]. Journal of Cleaner Production,2021,324:129243.