基于CFD的储能集装箱散热系统流场优化Optimization of Flow Field in Cooling System of Energy Storage Container Based on CFD
李金芳,叶琪超,应光耀,楼可炜
LI Jinfang,YE Qichao,YING Guangyao,LOU Kewei
摘要(Abstract):
锂电池是分布式储能中使用最广泛的电池,在中小型电站中主要以储能集装箱的形式出现,可有效地削峰填谷,保证供电的稳定性。储能集装箱内锂电池模组的散热是影响储能系统安全运行的主要问题,为此,通过CFD软件建立储能集装箱的物理模型,分析不同工况下集装箱内的温度分布情况。研究结果表明:冬季工况下基本不存在散热不良问题,应着重注意夏季工况;在夏季工况下分析出风口的位置及形状对温度分布的影响,发现将出风口布置在Z向两侧时集装箱的平均温度最低,圆形出风口的散热效果优于矩形出风口。
Lithium batteries are most widely used in distributed energy storage. In small and medium-sized power stations, lithium batteries are mainly in the form of energy storage containers for effective peak shaving and valley filling and ensuring power supply stability. Heat dissipation of the lithium battery modules in the energy storage container affects operation safety of the energy storage system. Therefore, a physical model of energy storage container is established by CFD to analyze the temperature distribution in the container under different working conditions. The research results show that there is no heat dissipation problem in winter; the influence of the location and shape of the air outlet on the temperature distribution in summer is analyzed,and it is found that when the container outlet is arranged on both sides of the Z direction, the average temperature of the container is the lowest, and heat dissipation effect of circular air outlet is better than that of the rectangular air outlet.
关键词(KeyWords):
锂电池;储能集装箱;散热;温度分布
lithium battery;energy storage container;heat dissipation;temperature distribution
基金项目(Foundation): 国家电网有限公司科技项目(211DS180036);; 杭州意能电力技术有限公司科技项目(EPRD2019-12,EPRD2019-16)
作者(Author):
李金芳,叶琪超,应光耀,楼可炜
LI Jinfang,YE Qichao,YING Guangyao,LOU Kewei
DOI: 10.19585/j.zjdl.202006016
参考文献(References):
- [1]殷志敏,章旭泳,俞强,等.考虑蓄电池记忆效应的风光储混合系统控制策略研究[J].浙江电力,2018,37(1):47-51.
- [2]张子峰,王林,陈东红,等.集装箱储能系统散热及抗震性研究[J].储能科学与技术,2013,2(6):642-648.
- [3]林楚.一季度全球新增投运电化学纯储能项目大幅下降[J].电力系统装备,2017(6):57-59.
- [4]李容高,周文平,马千里,等.基于新型相变储热的可再生能源项目经济性分析[J].智慧电力,2018,46(2):93-97.
- [5]钟国彬,王羽平,王超,等.大容量锂离子电池储能系统的热管理技术现状分析[J].储能科学与技术,2018,7(2):203-209.
- [6]虞跨海,李长浩,程永周.锂离子储能电池放电热行为仿真与实验研究[J].电源技术,2016,40(1):69-72.
- [7]何娇娇,毛俊雯.基于3D有限元的动力锂电池组散热分析[J].湖州师范学院学报,2018,40(8):15-20.
- [8]王帅,谢群鹏,贾永强,等.超级电容模组散热结构改进的研究[J].客车技术与研究,2017(5):32-34.
- [9]FAN L,KHODADADI J M,PESARAN A A.A parametric study on thermal management of an air-cooled lithiumion battery module for plug-in hybrid electric vehicles[J].Journal of Power Sources,2013(238):301-312.
- [10]李彩红,虞跨海,徐红玉,等.大容量锂离子电池储能系统散热研究[J].电子元件与材料,2016,35(11):90-94.
- [11]MAHAMUD R,PARK C.Reciprocating air flow for Li-ion battery thermal management to improve temperature uni formity[J].Journal of Power Sources,2011,196(13):5685-5696.
- [12]YU K,YANG X,CHENG Y,et al.Thermal analysis and two-directional air flow thermal management for lithiumion battery pack[J].Journal of Power Sources,2014,270(4):193-200.
- [13]沈毅.集装箱式储能系统的热分析及优化[J].电子世界,2017(11):29-30.
- [14]王晓松,游峰,张敏吉,等.集装箱式储能系统数值仿真模拟与优化[J].储能科学与技术,2016,5(4):577-582.