浙江电力

2024, v.43;No.333(01) 126-132

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

面向电力缺陷场景的小样本图像生成方法
A few-shot image generation method for power defect scenarios

何宇浩,宋云海,何森,周震震,孙萌,陈毅,闫云凤
HE Yuhao,SONG Yunhai,HE Sen,ZHOU Zhenzhen,SUN Meng,CHEN Yi,YAN Yunfeng

摘要(Abstract):

由于电力缺陷数据稀缺,目前大多数缺陷检测方法都无法有效地对电力缺陷情况进行准确的检测。为此,使用小样本图像生成方法,基于改进的LoFGAN(局部融合生成对抗网络),设计基于上下文信息的小样本图像生成器,提高缺陷检测网络对细节特征的提取能力;引入基于LC-散度的正则化损失来优化图像生成模型在有限数据集上的训练效果。实验表明,小样本图像生成方法能够为电力场景缺陷情况生成有效且多样的缺陷数据,所提模型能够有效解决电力缺陷场景数据稀缺的问题。
Due to the limited availability of power defect data, most current defect detection methods are unable to accurately detect power system anomalies. To overcome this challenge, a few-shot image generation method is employed. Building upon the improved local-fusion generative adversarial network(LoFGAN), a context-aware fewshot image generator is designed to enhance the defect detection network's capability to extract detailed features. A regularization loss based on LC-divergence is introduced to optimize the training effectiveness of the image generation model on limited datasets. Experimental results reveal that the few-shot image generation method can generate effective and diverse defect data for power scenarios. The proposed model can address the issue of data unavailability in power defect scenarios.

关键词(KeyWords): 小样本图像生成;电力缺陷;上下文信息;LC-散度
few-shot image generation;power defect;context-aware;LC-divergence

Abstract:

Keywords:

基金项目(Foundation): 浙江省科技计划项目(2022C01056);浙江省科技计划项目(LQ21F030017);; CCF-联想蓝海科研基金

作者(Author): 何宇浩,宋云海,何森,周震震,孙萌,陈毅,闫云凤
HE Yuhao,SONG Yunhai,HE Sen,ZHOU Zhenzhen,SUN Meng,CHEN Yi,YAN Yunfeng

DOI: 10.19585/j.zjdl.202401015

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享