一种基于特征引导的电力施工场景工装合规穿戴二阶段检测算法A Two-stage Detection Algorithm for Workwear Compliance in Power Construction Scenarios Based on Feature Guidance
林其雄,陈畅,闫云凤,齐冬莲
LIN Qixiong,CHEN Chang,YAN Yunfeng,QI Donglian
摘要(Abstract):
现有电力施工场景下关于工装穿戴的智能监管方案主要是针对安全帽,少有针对作业人员整体合规穿戴的相关方案。基于更细致的作业人员工装合规穿戴监管需求,提出一种二阶段的工装合规穿戴检测算法,包括人员定位阶段和人体区域工装合规检测阶段。针对现场人员工作姿态复杂的情况,结合特征金字塔网络和Guided Anchor提出一种基于Faster R-CNN优化的人员定位算法,在15 000余张现场采集样本构成的数据集上获得了91.1%的人员定位准确率,相比普通Faster R-CNN算法提升6.0%。二阶段检测算法在人体区域工装检测任务上获得92.9%的准确率,相比单阶段Faster R-CNN算法提升11.4%。
In the existing electric construction scenario,the intelligent supervision scheme for wearing workwear focuses on safety helmets,and there are few schemes for the overall workwear compliance of operators. In view of the more detailed requirements of workers′workwear compliance supervision,a two-stage compliance detection algorithm is proposed,which includes the personnel positioning stage and the human body area workwear compliance detection stage. Given the complex working posture of field personnel,a personnel positioning algorithm integrating FPN(feature pyramid network)and Guided Anchor based on Faster R-CNN is proposed. On the data set composed of more than 15, 000 on-site collected samples,a personnel positioning accuracy of 91.11% is obtained,6.0%higher than that of the ordinary Faster R-CNN scheme. The two-stage detection algorithm achieves an accuracy of92.9% in the human body area workwear detection task,which is 11.4% higher than the single-stage Faster R-CNN scheme.
关键词(KeyWords):
合规穿戴;Guided Anchor;二阶段检测;人员定位;人体区域工装检测
wearing compliance;Guided Anchor;two-stage detection;personnel positioning;human body area workwear compliance detection
基金项目(Foundation):
作者(Author):
林其雄,陈畅,闫云凤,齐冬莲
LIN Qixiong,CHEN Chang,YAN Yunfeng,QI Donglian
参考文献(References):
- [1]徐波,魏利军.基于视频分析技术的违章作业智能监控系统应用研究[J].中国安全生产科学技术,2014,10(增刊1):79-83.
- [2]徐长福,陶风波,龚雁峰,等.基于谷歌眼镜的智能变电站实时数据展示与智能分析技术[J].电力工程技术,2017,36(1):91-94.
- [3]吕继伟.基于泛在电力物联网的换流站在线监测系统优化综述[J].电力工程技术,2019,38(6):9-15.
- [4]陈汐,韩译锋,闫云凤,等.目标物智能跟踪与分割融合算法及其在变电站视频监控中的应用[J].中国电机工程学报,2020,40(23):7578-7587.
- [5]冯国臣,陈艳艳,陈宁.基于机器视觉的安全帽自动识别技术研究[J].机械设计与制造工程,2015,44(10):39-42.
- [6]刘晓慧,叶西宁.肤色检测和Hu矩在安全帽识别中的应用[J].华东理工大学学报(自然科学版),2014,40(3):365-370.
- [7] MNEYMNEH B E,ABBAS M,KHOURY H. Automated hardhat detection for construction safety applications[J].Procedia Engineering,2017,196:895-902.
- [8]杨莉琼,蔡利强,古松.基于机器学习方法的安全帽佩戴行为检测[J].中国安全生产科学技术,2019,15(10):152-157.
- [9] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]//2016. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:779-788.
- [10] REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:6517-6525.
- [11] REDMON J,FARHADI A.YOLOv3:an incremental improvement[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:89-95.
- [12]徐渊,许晓亮,李才年,等.结合SVM分类器与HOG特征提取的行人检测[J].计算机工程,2016,42(1):56-60.
- [13] GUO J,CHENG J,PANG J X,et al.Real-time hand detection based on multi-stage HOG-SVM classifier[J].IEEE International Conference on Image Processing,2013(1):4108-4111.
- [14]李华,王岩彬,益朋,等.基于深度学习的复杂作业场景下安全帽识别研究[J].中国安全生产科学技术,2021,17(1):175-181.
- [15]张春堂,管利聪.基于SSD-MobileNet的矿工安保穿戴设备检测系统[J].工矿自动化,2019,45(6):96-100.
- [16] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis&Machine Intelligence,2015,39(6):1137-1149.
- [17] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Hawaii:IEEE,2017.936-944.
- [18] WANG J,CHEN K,YANG S,et al.Region proposal by Guided Anchoring[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019:2965-2974.
- [19] HE K,ZHANG X Y,REN S,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision&Pattern Recognition. Las Vegas:IEEE,Computer Society,2016:770-778.
- [20]姚锦松,周伟绩,印欣,等.基于泛在电力物联网理念的电力工作现场安全远程稽查系统建设与应用[J].四川电力技术,2020,43(1):77-81.
- [21]王浩,王功臣,娄德章,等.基于AI边缘深度算法视频分析装置的电力场景异常识别技术研究[J].电力大数据,2021,24(11):1-8.
- [22]常政威,彭倩,张泰,等.电力作业现场可穿戴安全保障系统设计与实现[J].四川电力技术,2020,43(3):43-47.
- 合规穿戴
- Guided Anchor
- 二阶段检测
- 人员定位
- 人体区域工装检测
wearing compliance - Guided Anchor
- two-stage detection
- personnel positioning
- human body area workwear compliance detection