基于并行概率潮流计算的含光伏配电网电压风险评估Photovoltaic Penetrated Distribution Grid Voltage Risk Evaluation Based on Parallel Power Flow Computing Technology
章立宗,张锋明,蒋正威,沈祥,余杰,金学奇,程天石,蒋玮
ZHANG Lizong,ZHANG Fengming,JIANG Zhengwei,SHEN Xiang,YU Jie,JIN Xueqi,CHENG Tianshi,JIANG Wei
摘要(Abstract):
分布式电源和用电负荷的随机波动造成电网电压变化,传统潮流计算方法难以对分布式电源和负荷波动造成的电压风险进行评估。同时,传统串行计算难以满足大规模配电网快速电压风险评估的需求。针对上述问题,首先分析了光伏出力和负荷波动的概率特征,建立了相应的概率模型。进而对牛顿-拉夫逊算法进行扩展,提出了利用蒙特卡洛模拟评估电压风险的指标。为了满足大规模配电网电压风险计算速度的要求,搭建了基于Apache Spark的并行计算平台,提出了基于Spark RDD的并行蒙特卡洛模拟算法。在Spark测试平台上对算例进行了计算分析。结果证明,该算法可以真实反映配电网电压波动情况,并行计算的性能优越。
The stochastic fluctuations of distributed generation(DG) and loads may cause large voltage variation in microgrid, which can hardly be evaluated by traditional power flow computing methods. Besides, the traditional serial computing can not be used for fast voltage risk evaluation of large scale distribution networks.Therefore, probability characteristics of photovoltaic output and load fluctuation are analyzed to build a probability model; Newton-Raphson method is extended to propose indicators for voltage risk simulation and evaluation based on Monte Carlo method. For fast voltage risk computing of large distribution networks, a parallel computing platform based on Apache Spark is built, and a parallel Monte Carlo method based on Spark RDD is proposed. A computing example is tested on the Spark, and the result shows that the method can reflect distribution network fluctuation and is superior in performance.
关键词(KeyWords):
主动配电网;蒙特卡洛模拟;电压风险评估;分布式并行计算
active distribution network;Monte-Carlo method;voltage risk evaluation;distributed parallel computing
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211SX16000A)
作者(Author):
章立宗,张锋明,蒋正威,沈祥,余杰,金学奇,程天石,蒋玮
ZHANG Lizong,ZHANG Fengming,JIANG Zhengwei,SHEN Xiang,YU Jie,JIN Xueqi,CHENG Tianshi,JIANG Wei
DOI: 10.19585/j.zjdl.201808002
参考文献(References):
- [1]薛佳佳.基于动态规划算法的有源配电网电压控制研究[D].北京:华北电力大学,2014.
- [2]周湶,廖婧舒,廖瑞金,等.含分布式电源的配电网停电风险快速评估[J].电网技术,2014,38(4):882-887.
- [3]熊飞,董蓓蓓,李更丰.含间歇性分布式电源的配电系统风险评估[J].电力系统自动化,2016,40(12):62-67.
- [4]陈璨,吴文传,张伯明,等.考虑光伏出力相关性的配电网概率潮流[J].电力系统自动化,2015,39(9):41-47.
- [5]CHENG L,CHANG Y,HUANG R.Mitigating Voltage Problem in Distribution System With Distributed Solar Generation Using Electric Vehicles[J].IEEE Transactions on Sustainable Energy,2017,6(4):1475-1484.
- [6]XU Y,DONG Z Y,ZHANG R,et al.Multi-Timescale Coordinated Voltage/Var Control of High Renewable-Penetrated Distribution Systems[J].IEEE Transactions on Power Systems,2017(6):4398-4408.
- [7]蔡德福,石东源,陈金富.基于多项式正态变换和拉丁潮立方采样的概率潮流计算方法[J].中国电机工程学报,2013,33(13):92-100.
- [8]刘宇,高山,杨胜春,等.电力系统概率潮流算法综述[J].电力系统自动化,2014,38(23):127-135.
- [9]陈雁,文劲宇,程时杰.考虑输入变量相关性的概率潮流计算方法[J].中国电机工程学报,2011,31(22):80-87.
- [10]MORALES J M,BARINGO L,CONEJO A J,et al.Probabilistic power flow with correlated wind sources[J].Generation Transmission&Distribution,IET,2010,4(5):641-651.
- [11]陈璨,吴文传,张伯明,等.考虑光伏出力相关性的配电网概率潮流[J].电力系统自动化,2015,39(9):41-47.
- [12]廖剑波,李振坤,符杨.基于随机潮流的主动配电网运行风险评估[J].现代电力,2017,34(2):20-27.
- [13]段玉兵,龚宇雷,谭兴国,等.基于蒙特卡罗模拟的配电网概率潮流计算方法[J].电工技术学报,2011,26(S1):274-278.
- [14]BASAK A,BRINSTER I,MA X,et al.Accelerating Bayesian network parameter learning using Hadoop and Map Reduce[C]//International Workshop on Big Data,Streams and Heterogeneous Source Mining:Algorithms,Systems,Pro gramming MODELS and Applications.ACM,2012:101-108.
- [15]李成华,张新访,金海,等.Map Reduce:新型的分布式并行计算编程模型[J].计算机工程与科学,2011,33(3):129-135.
- [16]王德文,孙志伟.电力用户侧大数据分析与并行负荷预测[J].中国电机工程学报,2015,35(3):527-537.
- [17]张俊蔚.基于物理模型的光伏电站输出功率预测[J].甘肃水利水电技术,2015,51(1):46-49.
- [18]彭寒梅.微电网潮流计算及可靠性评估研究[D].湖南大学,2016.
- [19]WANG S,WANG J,CHUANG F L.Kernel Density Estimation,Kernel Methods,and Fast Learning in Large Data Sets[J].IEEE Transactions on Cybernetics,2013,44(1):1-20.
- [20]XU X,YAN Z,XU S.Estimating wind speed probability distribution by diffusion-based kernel density method[J].Electric Power Systems Research,2015,121:28-37.
- [21]王家林.大数据Spark企业级实战[M].北京:电子工业出版社,2015.
- [22]代晓康.大规模电力系统调度决策的粗粒度并行计算[D].华中科技大学,2015.
- [23]GREEN R C,WANG L,ALAM M,et al.Intelligent and parallel state space pruning for power system reliability analysis using MPI on a multicore platform[C]//Innovative Smart Grid Technologies.IEEE,2011:1-8.
- [24]WANG S,ZHOU L,LI Y,et al.Parallel Monte Carlo Method with Map Reduce for Option Pricing[C]//Trustcom/bigdatase/ispa.IEEE,2017:2116-2121.
- [25]RUDION K,ORTHS A,STYCZYNSKI Z A,et al.Design of benchmark of medium voltage distribution network for investigation of DG integration[C]//Power Engineering Society General Meeting.IEEE,2006:6.
- 主动配电网
- 蒙特卡洛模拟
- 电压风险评估
- 分布式并行计算
active distribution network - Monte-Carlo method
- voltage risk evaluation
- distributed parallel computing
- 章立宗
- 张锋明
- 蒋正威
- 沈祥
- 余杰
- 金学奇
- 程天石
- 蒋玮
ZHANG Lizong - ZHANG Fengming
- JIANG Zhengwei
- SHEN Xiang
- YU Jie
- JIN Xueqi
- CHENG Tianshi
- JIANG Wei
- 章立宗
- 张锋明
- 蒋正威
- 沈祥
- 余杰
- 金学奇
- 程天石
- 蒋玮
ZHANG Lizong - ZHANG Fengming
- JIANG Zhengwei
- SHEN Xiang
- YU Jie
- JIN Xueqi
- CHENG Tianshi
- JIANG Wei