浙江电力

2023, v.42;No.324(04) 114-120

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于LSTM神经网络的电抗器故障声纹识别方法
Research on voiceprint recognition of reactor fault based on LSTM neural network

曹力潭,魏华兵,黄智,石明垒
CAO Litan,WEI Huabing,HUANG Zhi,SHI Minglei

摘要(Abstract):

高压电抗器是保障电力系统安全稳定运行的重要设备之一,针对高压电抗器故障难以被准确识别的问题,提出了基于LSTM(长短期记忆)神经网络的高压电抗器故障声纹识别方法。首先对一台高压电抗器运行时产生的声纹信号进行收集,然后将声纹信号分为若干个声纹片段后转换为语谱图,并使用Mel时频谱降维处理,最后采用LSTM网络对语谱图进行高压电抗器故障识别。实验结果表明,所提出的方法实现了高压电抗器故障的智能化诊断,有效提高故障识别的精准度,减少故障检测时所需投入的人力,助推电网安全监测智能化水平的提升。
High-voltage reactor is one of the critical equipment to ensure the safe and stable operation of power system. As the fault of high-voltage reactor is difficult to be identified accurately, a voiceprint recognition method based on LSTM(long short-term memory) neural network for high-voltage reactor faults is proposed. Firstly, the voiceprint signals generated during the operation of a high-voltage reactor are collected. Then the signals are divided into several segments, converted into a spectrogram, and the Mel time spectrum is used to reduce the dimensionality. Finally, the LSTM network is used to identify the high-voltage reactor faults in the spectrogram. The experimental results show that the proposed method can realize the intelligent diagnosis of high-voltage reactor faults, effectively improve the accuracy of fault identification, reduce the manpower required for fault detection, and improve the intelligent level of power grid safety monitoring.

关键词(KeyWords): 高压电抗器;长短期记忆网络;声纹识别;故障;语谱图
high-voltage reactor;LSTM network;voiceprint recognition;fault;spectrogram

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211MR20004U)

作者(Author): 曹力潭,魏华兵,黄智,石明垒
CAO Litan,WEI Huabing,HUANG Zhi,SHI Minglei

DOI: 10.19585/j.zjdl.202304014

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享