发电厂脱硫系统串联塔的水平衡及液位控制Research on Water Balance and Level Control in Cascade Tower Desulfurization System
魏新,宁翔,茹宇,漆聪,肖海平
WEI Xin,NING Xiang,RU Yu,QI Cong,XIAO Haiping
摘要(Abstract):
超低排放和灵活性发电背景下,脱硫系统串联吸收塔液位波动大,液位和水平衡难以有效控制。基于某600 MW机组脱硫系统实际运行工况,分析了负荷及烟温改变时吸收塔蒸发量的变化趋势,研究脱硫系统一二级塔的用水分布规律。通过计算分析发现:随着烟气量的减少,脱硫塔内总蒸发量大幅度减少,其中一级塔蒸发水量下降明显,二级塔下降较少。烟气温度对塔内蒸发量影响明显,烟气温度越高塔内蒸发量越大,但二级塔内蒸发量变化较小。随着负荷降低,二级塔除雾器冲洗水将超过蒸发水量,导致液位失衡。因此,采取二级塔低液位运行以及适当延长除雾器冲洗周期等措施,有利于缓解吸收塔液位失衡问题。
Under the background of ultra-low emission and flexible power generation, the level of absorption tower fluctuates greatly in cascade tower desulfurization system. The level and the water balance are difficult to be effectively controlled. Based on the actual operating conditions of a desulfurization system in a 600 MW unit, the change of the evaporation capacity in the absorption tower was analyzed with the change of the load and the gas temperature. The water balance of the first and second stage tower was studied. Through calculation and analysis, it is found that the total evaporation of the desulfurization tower decreases greatly with the decrease of flue gas. The evaporation of water in a primary tower decreases obviously, and the decrease of the second stage tower is less. The flue gas temperature affected the evaporation significantly, the higher flue gas temperature is, the more evaporation is. But the evaporation in the second stage tower changes smaller.The evaporation in the absorption tower increases mainly due to the sharp increase of evaporation in the first tower. With the loaddecrease, the flushing water usage for the demister in the second stage tower exceeds the evaporation water, resulting in level imbalance. The operation condition that the second stage tower is in the low level and proper extension of the flushing period of demister can help to alleviate level imbalance.
关键词(KeyWords):
脱硫串联塔;液位;水平衡;除雾器
cascade desulfurization tower;level;water balance;demister
基金项目(Foundation): 中央高校基本科研业务费专项资金项目(51206047)
作者(Author):
魏新,宁翔,茹宇,漆聪,肖海平
WEI Xin,NING Xiang,RU Yu,QI Cong,XIAO Haiping
DOI: 10.19585/j.zjdl.201803016
参考文献(References):
- [1]潘军涛,屠士凤,倪仲俊.超低排放改造后CEMS测量准确性的提高[J].浙江电力,2017,36(7):43-45.
- [2]肖丽,王刚,金礼方.600 MW级火电机组超低排放改造后的运行成效分析[J].浙江电力,2016,35(7):37-40.
- [3]朱法华,王临清.煤电超低排放的技术经济与环境效益分析[J].环境保护,2014,42(21):28-33.
- [4]吴优福.循环流化床锅炉SO2超低排放技术研究[J].洁净煤技术,2017,23(2):108-113.
- [5]张伟,陈民,邢浩,等.脱硫超低排放技术改造及经济性分析[J].东北电力技术,2017,38(3):28-31.
- [6]姚胜威.脱硫超低排放技术在电厂中的应用探讨[J].机电信息,2016(15):84-85.
- [7]薛方明,邵媛.双塔双循环脱硫技术在执行污染物超低排放火电机组中的应用[J].山东化工,2015,44(20):147-150.
- [8]李兴华,何育.燃煤火电机组SO2超低排放改造方案研究[J].中国电力,2015,48(10):148-151.
- [9]汪作胜,殷雅丹.论大唐国际盘山燃煤机组串塔脱硫除尘一体化超低排放改造技术[J].价值工程,2016,35(30):62-63.
- [10]王仁雷,蔡传钰,张杨,等.不同浆液循环泵运行方式下串联吸收塔脱硫效果评价及优化[J].电站系统工程,2016,32(2):19-21.
- [11]徐国祥.吸收塔串联在高硫煤种烟气脱硫中的节能应用[C]//火电厂污染物净化与节能技术研讨会论文集,2013.
- [12]余昭,何育东,李兴华,等.石灰石-石膏法串联脱硫塔系统[J].热力发电,2016,45(2):91-95.
- [13]蔡子嘉.脱硫串联塔优化运行研究[J].科技创新导报,2016,13(19):60-61.
- [14]程立华,张立权,李付宁.330 MW机组脱硫系统串塔技术改造[J].山东工业技术,2015(3):84-85.
- [15]林朝扶,兰建辉,梁国柱,等.串联吸收塔脱硫技术在燃超高硫煤火电厂的应用[J].广西电力,2013,36(5):11-15.
- [16]梁国柱,林朝扶,李国晖.330 MW机组脱硫系统串联塔改造[J].广西电力,2012,35(5):44-46.
- [17]张宗来.燃煤电厂SO2超低排放技术研究及其应用[J].电网与清洁能源,2017,33(7):116-122.
- [18]武纪原.浆液品质及性能对湿法脱硫系统脱硫率影响[J].江苏电机工程,2016,35(1):92-94.