基于数据驱动的配电网拓扑识别及线路阻抗估计Date-Driven Distribution Network Topology Identification and Line Impedance Estimation
童力,梁海维,邹旭东,周仪旎
TONG Li,LIANG Haiwei,ZOU Xudong,ZHOU Yini
摘要(Abstract):
中低压配电网的拓扑识别及线路阻抗参数估计是未来智能配电网实现各种功能的基础。依托AMI(高级量测体系)提供的电量信息,提出了一种仅依靠配电网节点电压及功率数据驱动的中低压配电网拓扑识别及线路阻抗估计方法。利用核密度估计方法计算各节点电压数据间的互信息并据此分析各节点间相关性;根据图的最小生成树算法生成以邻接矩阵形式表示的配电网拓扑;结合线性回归及Distflow潮流模型对拓扑进行校正,检验拓扑中是否存在AMI系统中没有相关数据的汇流节点并计算线路阻抗;最终得到准确的配电网拓扑及线路阻抗参数。通过IEEE 33节点中压配电网及典型低压配电网算例对所提方法进行了验证,结果表明所提方法能够准确辨识拓扑及线路阻抗参数,即使在感知设备不足的低压配电网中仍有较好的辨识效果。
The topological structure and line impedance parameters of low-and medium-voltage distribution networks are the foundation of realizing various functions of the future intelligent distribution networks. Given the shortcomings of traditional distribution network topology identification methods such as poor timeliness and inability to accurately obtain line impedance parameters,a topology identification and line impedance estimation method for low-and medium-voltage distribution networks driven only by voltage and power data of distribution network nodes is proposed with the backing of power information provided by AMI(advanced metering infrastructure). Firstly,the kernel density estimation method is used to calculate the mutual information(MI)among node voltage data and analyze the correlation among nodes accordingly. Secondly,the distribution network topology is generated in the form of an adjacency matrix according to the minimum spanning tree algorithm. Thirdly,the topology is corrected by combining linear regression and Distflow model to check whether there are outflow nodes without relevant data in the AMI system,and the line impedance is calculated. Finally,the accurate distribution network topology and line impedance parameters are obtained. The proposed method is validated by using examples of IEEE 33-node mediumvoltage distribution networks and typical low-voltage distribution networks. The results show that the proposed method can accurately identify the topology and line impedance parameters even in the absence of sensing equipment for low-voltage distribution networks.
关键词(KeyWords):
数据驱动;拓扑识别;线路阻抗估计;中低压配电网;AMI系统
data-driven;topology identification;line impedance estimation;medium-and low-voltage distribution networks;advanced metering infrastructure
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211DS190037)
作者(Author):
童力,梁海维,邹旭东,周仪旎
TONG Li,LIANG Haiwei,ZOU Xudong,ZHOU Yini
DOI: 10.19585/j.zjdl.202201002
参考文献(References):
- [1]栾文鹏,余贻鑫,张展国.AMI数据分析方法[J].中国电机工程学报,2015,35(1):29-36.
- [2]李坤,周来,张勇军,等.基于量测数据质量的电压台区拓扑识别结果可信度评价[J].电力系统自动化,2021,45(17):99-107.
- [3]刘科研,盛万兴,张东霞,等.智能配电网大数据应用需求和场景分析研究[J].中国电机工程学报,2015,35(2):287-293.
- [4]刘超,杨扬,梁栋,等.基于AMI潮流匹配的中压配电网两阶段拓扑辨识[J].电力系统及其自动化学报,2020,32(3):123-128.
- [5]LUAN W,PENG J,MARAS M,et al.Harapnuk,smart meter data analytics for distribution network connectivity verification[J].IEEE Transactions on Smart Grid,2015,6(4):1964-1971.
- [6]罗群,刘春雨,顾强,等.基于最优匹配回路功率的配电网拓扑辨识方法[J].电测与仪表,2019,56(19):1-6.
- [7]LIAO Y,WENG Y,RAJAGOPAL R.Urban distribution grid topology reconstruction via Lasso[C]//2016 IEEEPower and Energy Society General Meeting(PESGM),Boston,MA,USA.IEEE,2016:1-5.
- [8]LIAO Y,WENG Y,LIU G Y.Urban MV and LV distribution grid topology estimation via group lasso[J].IEEETransactions on Power Systems,2019,34(1):12-27.
- [9]李昂,刘亚东,孙鹏,等.基于μPMU相位数据的配电网拓扑识别方法[J].智慧电力,2017,45(11):31-36.
- [10]YU J F,WENG Y,RAJAGOPAL R.Pa To Pa EM:Adata-driven parameter and topology joint estimation framework for time-varying system in distribution grids[J].IEEE Transactions on Power Systems,2019,34(3):1682-1692.
- [11]裴宇婷,秦超,余贻鑫.基于Light GBM和DNN的智能配电网在线拓扑辨识[J].天津大学学报(自然科学与工程技术版),2020,53(9):939-950.
- [12]王兵.基于量测数据的低压配电网精确建模[D].天津:天津大学,2014.
- [13]唐捷,蔡永志,周来等.基于数据驱动的低压配电网线户关系识别方法[J].电力系统自动化,2020,44(11):127-134.
- [14]肖勇,赵云,涂志东,等.基于改进的皮尔逊相关系数的低压配电网拓扑结构校验方法[J].电力系统保护与控制,2019,47(11):37-43.
- [15]DENG C H,CHU X D.Topology estimation of power distribution grids using graphical model[C]//2020 IEEEIAS Industrial and Commercial Power System Asia.July13-15,2020,Weihai,China.IEEE,2020:784-788.
- [16]杨志淳,沈煜,杨帆,等.基于数据关联分析的低压配电网拓扑识别方法[J].电测与仪表,2020,57(18):5-11.
- [17]EPANECHNIKOV V A.Nonparametric estimation of a multidimensional probability density[J].Theory of Probability and Its Application,1969,14:153-158.
- [18]WENG Y,LIAO Y Z,RAJAGOPAL R.Distributed energy resources topology identification via graphical modeling[J].IEEE Transactions on Power Systems,2017,32(4):2682-2694.
- [19]MOON Y I,RAJAGOPALAN B,LALL U.Estimation of mutual information using kernel density estimators[J].Physical Review,1995,32(3):2318-2321.
- [20]LIAO Y Z,WENG Y,LIU G Y,et al.Unbalanced multiphase distribution grid topology estimation and bus phase identification[J].IET Smart Grid,2019,2(4):557-570.
- [21]CORMEN T H,LEISERSO C E,RIVEST R L,et al.算法导论[M].北京:机械工业出版社,2013:362-370.
- [22]KERSTING W H.配电系统建模与分析[M].北京:机械工业出版社:北京,2015:30-54.
- [23]CUNHA V C,FREITAS W,TRINDADE F C L,et al.Automated determination of topology and line parameters in low voltage systems using smart meters measurements[J].IEEE Transactions on Smart Grid,2020,11(6):5028-5038
- [24]PEPPANEN J,RENO M J,THAKKAR M,et al.Leveraging AMI data for distribution system model calibration and situational awareness[J].IEEE Transactions on Smart Grid,2015,6(4):2050-2059
- 数据驱动
- 拓扑识别
- 线路阻抗估计
- 中低压配电网
- AMI系统
data-driven - topology identification
- line impedance estimation
- medium-and low-voltage distribution networks
- advanced metering infrastructure