浙江电力

2024, v.43;No.340(08) 1-11

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于SVD-ILMD的暂态电能质量扰动定位检测方法
A location and detection method for transient power quality disturbance using SVD-ILMD

程江洲,张志强,闫冉阳,李小来,谢卓然,胡哲豪
CHENG Jiangzhou,ZHANG Zhiqiang,YAN Ranyang,LI Xiaolai,XIE Zhuoran,HU Zhehao

摘要(Abstract):

为实现对电网非平稳扰动信号的快速、准确分析,提出了融合SVD(奇异值分解)与ILMD(优化局部均值分解)的暂态电能质量扰动定位检测方法。首先,通过ILMD与模糊隶属度函数阈值处理噪声信息,削弱噪声干扰;然后,构造差值信号并利用滑窗SVD增强扰动特征,进一步抑制噪声干扰;最后,基于特征增强信号提出一种自适应阈值截断的暂态电能质量扰动定位检测方法。经仿真分析与算法对比,验证了所提方法定位准确、抗噪性强、计算量小,对过零与微弱扰动也有较好的定位效果。
Swiftly and accurately analyze non-stationary disturbance signals within the power grid, a location and detection method for transient power quality disturbance that combines singular value decomposition(SVD) and improved local mean decomposition(ILMD) is proposed. First, noise information is processed by using ILMD and a fuzzy membership function threshold to mitigate noise interference. Then, a difference signal is formulated, and a sliding window SVD is employed to amplify the disturbance features while further suppressing noise interference. In conclusion, an adaptive threshold truncation-based approach for localizing and detecting transient power quality disturbances is proposed, utilizing the feature-enhanced signal. Simulation analysis and algorithm comparisons confirm that the proposed method exhibits precise location, robust resistance to noise, and low computational complexity.Moreover, it demonstrates excellent performance in detecting zero-crossing and minor disturbances.

关键词(KeyWords): 暂态电能质量;扰动定位检测;差值信号;奇异值分解;局部均值分解
transient power quality;disturbance location and detection;difference signal;SVD;LMD

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金(52277012)

作者(Author): 程江洲,张志强,闫冉阳,李小来,谢卓然,胡哲豪
CHENG Jiangzhou,ZHANG Zhiqiang,YAN Ranyang,LI Xiaolai,XIE Zhuoran,HU Zhehao

DOI: 10.19585/j.zjdl.202408001

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享