基于馈线故障预测的配电网抢修驻点优化选址Optimal location of stationing points for distribution network repair based on feeder fault prediction
施聚辉,黄晓燕,曹智博,王涛
SHI Juhui,HUANG Xiaoyan,CAO Zhibo,WANG Tao
摘要(Abstract):
为了提高配电网故障抢修效率,通过分析浙江台州某区域的电网运行数据、历史故障数据和网架分布情况,提出一种基于馈线故障预测的配电网抢修驻点优化选址方法。首先根据馈线的故障预测等级,对目标区域内的馈线进行合理划分。然后利用人工免疫优化算法,考虑各项约束条件,依照馈线自身地理特性并结合馈线故障预测结果,得出抢修驻点的最优选址。最后通过算例分析验证了所提方法可以有效提升抢修效率,为故障发生后的快速恢复供电提供有力保障。
To improve the efficiency of distribution network repair, an optimal stationing point location method for distribution network repair is proposed based on feeder fault prediction by analyzing the power grid operation data, historical fault data and grid structure distribution in a region of Taizhou, Zhejiang province. Firstly, feeders in the target area are reasonably divided based on the fault prediction level. Secondly, an artificial immune optimization algorithm is used and all the constraints are considered to conclude the optimal location based on the geographic characteristics of the feeders and the results of the feeder fault prediction. Finally, it is proved by an example that the proposed method is effective in improving repair efficiency and can provide a strong guarantee for the rapid postfault restoration of power supply.
关键词(KeyWords):
配电网;馈线;故障预测;人工免疫优化算法;抢修驻点
distribution network;feeder;fault prediction;artificial immune optimization algorithm;stationing points for repair
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211TZ22000D)
作者(Author):
施聚辉,黄晓燕,曹智博,王涛
SHI Juhui,HUANG Xiaoyan,CAO Zhibo,WANG Tao
DOI: 10.19585/j.zjdl.202307010
参考文献(References):
- [1]赵波,王财胜,周金辉,等.主动配电网现状与未来发展[J].电力系统自动化,2014,38(18):125-135.ZHAO Bo,WANG Caisheng,ZHOU Jinhui,et al.Present and future development trend of active distribution network[J].Automation of Electric Power Systems,2014,38(18):125-135.
- [2]孟军,施萱轩,陈中,等.配电网故障抢修驻点选址与抢修任务分配优化策略[J].广东电力,2018,31(3):120-126.MENG Jun,SHI Xuanxuan,CHEN Zhong,et al.Optimization strategy of location and task allocation of fault repair in distribution network[J].Guangdong Electric Power,2018,31(3):120-126.
- [3]郭永,孙海旺.配电网故障抢修驻点选址及优化抢修任务分配[J].数字化用户,2019,25(6):119.
- [4]陈广宇,柳慧琴,邱文祥,等.基于适应度的配电网多故障抢修任务分配策略[J].电力自动化设备,2014,34(11):67-74.CHEN Guangyu,LIU Huiqin,QIU Wenxiang,et al.Fitness-based task allocation strategy for multi-fault repair of distribution system[J].Electric Power Automation Equipment,2014,34(11):67-74.
- [5]杨隆,李长城,罗伟,等.提升配电网恢复效率的抢修策略优化研究[J].浙江电力,2020,39(7):30-35.YANG Long,LI Changcheng,LUO Wei,et al.Optimization of emergency repair strategy for restoration efficiency improvement of distribution network[J].Zhejiang Electric Power,2020,39(7):30-35.
- [6]李学平,卢志刚,刘照拯,等.含分布式电源的配电网多故障抢修的多代理策略研究[J].电工技术学报,2013,28(8):48-55.LI Xueping,LU Zhigang,LIU Zhaozheng,et al.Multiagent strategy of distribution networks multi-faults rushrepair with distributed generators[J].Transactions of China Electrotechnical Society,2013,28(8):48-55.
- [7]李德有,李凌霞,郭瑞波.基于Weka平台的机器学习方法探究[J].电脑知识与技术,2012,8(10):2334-2337.LI Deyou,LI Lingxia,GUO Ruibo.Research of machine leaning based on weka platform[J].Computer Knowledge and Technology,2012,8(10):2334-2337.
- [8]高海宾.基于Weka平台的决策树J48算法实验研究[J].湖南理工学院学报(自然科学版),2017,30(1):21-25.GAO Haibin.Experimental study on J48 algorithm of decision tree based on Weka[J].Journal of Hunan Institute of Science and Technology (Natural Sciences),2017,30(1):21-25.
- [9]赵阳.Weka系统及其在数据挖掘教学中的应用[J].科技信息,2008(30):409-410.ZHAO Yang.Weka and application in the data mining teaching[J].Science&Technology Information,2008(30):409-410.
- [10]程斐斐,王子牛,侯立铎.决策树算法在Weka平台上的数据挖掘应用[J].微型电脑应用,2015,31(6):63-65.CHENG Feifei,WANG Ziniu,HOU Liduo.Data mining application in weka platform based on decision tree classification[J].Microcomputer Applications,2015,31(6):63-65.
- [11]刘科研,吴心忠,石琛,等.基于数据挖掘的配电网故障风险预警算法中的应用[J].电力自动化设备,2018,38(5):148-153.LIU Keyan,WU Xinzhong,SHI Chen,et al.Fault risk early warning of distribution network based on data mining[J].Electric Power Automation Equipment,2018,38(5):148-153.
- [12]杨丽君,吕雪姣,李丹,等.含分布式电源的配电网多故障抢修与恢复协调优化策略[J].电力系统自动化,2016,40(20):13-19.YANG Lijun,LYU Xuejiao,LI Dan,et al.Coordinated optimization strategy of multi-fault repair and recovery for distribution network with distributed generators[J].Automation of Electric Power Systems,2016,40(20):13-19.
- [13]卢志刚,刘照拯,张晶,等.含分布式电源的配电网灾后分阶段抢修策略[J].电工电能新技术,2015,34(1):69-74.LU Zhigang,LIU Zhaozheng,ZHANG Jing,et al.Staged rush repair strategy of distribution networks with distributed generators after disaster[J].Advanced Technology of Electrical Engineering and Energy,2015,34(1):69-74.
- [14]马瑞,张海波,王建雄,等.考虑负荷时变性的配电网故障抢修恢复策略[J].电力科学与技术学报,2019,34(2):20-27.MA Rui,ZHANG Haibo,WANG Jianxiong,et al.Research on fault rush repair and recovery strategy of distribution network considering time variation of load[J].Journal of Electric Power Science and Technology,2019,34(2):20-27.
- [15]陆如,范宏,周献远.基于大数据技术的配电网抢修驻点优化方法[J].供用电,2015,32(8):31-36.LU Ru,FAN Hong,ZHOU Xianyuan.Optimization method of repair the stagnation point distribution based on big data analysis method[J].Distribution&Utilization,2015,32(8):31-36.
- [16]李想.人工免疫算法优化分析[J].科技信息,2011(18):522-523.LI Xiang.Optimization analysis of artificial immune algorithm[J].Science&Technology Information,2011(18):522-523.
- [17]马国岗,王瑞成.基于人工免疫算法的航空机务维修器材保障点选址优化研究[J].航空科学技术,2014,25(2):12-16.MA Guogang,WANG Ruicheng.Research on support position location of aviation maintenance equipment based on artifical immune algorithm[J].Aeronautical Science&Technology,2014,25(2):12-16.
- [18]丁晓群,李子韵,黄伟,等.基于免疫算法的配电网电容器优化配置[J].浙江电力,2003(4):1-4.DING Xiaoqun,LI Ziyun,HUANG Wei,et al.Optimization to capacitor placement in distribution system based on immune-based algorithm[J].Zhejiang Electric Power,2003(4):1-4.