浙江电力

2022, v.41;No.316(08) 87-94

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于改进Mask R-CNN的变压器绝缘套管故障智能诊断
Intelligent fault diagnosis of transformer insulating bushings based on improved Mask R-CNN

王坚俊,孙林涛,刘昌标,刘江明,周国伟,郭创新
WANG Jianjun,SUN Lintao,LIU Changbiao,LIU Jiangming,ZHOU Guowei,GUO Chuangxin

摘要(Abstract):

绝缘套管是变压器箱外主要的绝缘装置,对变压器安全稳定运行具有重要意义。为提高绝缘套管故障诊断效率,提出了一种基于改进Mask R-CNN的变压器绝缘套管故障智能诊断方法。在运维过程中收集含绝缘套管的红外图像并标注,完成数据集的初步搭建。为缓解平衡正负样本不均衡,使用旋转缩放、裁剪平移等方法扩增负样本数量,并引入了GHM Loss函数。采用MobileNetv3作为Mask R-CNN的主干网络,以满足实时检测的要求。对比实验表明,改进后的Mask R-CNN检测速度达到216 ms每帧,故障诊断率为89.72%,误报率为6.78%,可以准确实现变压器绝缘套管故障智能诊断,对自动巡检和建设智能电站有一定应用价值。
As a major insulation device outside the transformer box,insulating bushing is of great significance to the safe and stable operation of the transformer. In order to improve fault diagnosis efficiency of insulating bushing,an intelligent diagnosis method of transformer insulating bushing fault based on improved Mask R-CNN is proposed in this paper. Firstly,the infrared images including those of insulating bushings are collected and labeled,and a preliminary data set is established in the process of operation and maintenance. In order to remedy the imbalance between positive and negative samples,negative samples are increased by rotating,scaling,clipping and translation,and the GHM loss function is introduced. MobileNetv3 is used as the backbone network of mask R-CNN to meet the requirements of real-time detection. The comparative experiments show that the improved Mask R-CNN acquires a detection speed as high as 216 ms per frame,a fault diagnosis rate of 89.72% and a misreport rate of 6.78%;it can accurately realize the intelligent fault diagnosis of transformer insulating bushings and can be used for automatic inspection and construction of intelligent power stations.

关键词(KeyWords): 变压器绝缘套管;红外图像;改进Mask R-CNN;故障诊断
transformer insulating bushing;infrared image;improved Mask R-CNN;fault diagnosis

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211MR20004T)

作者(Author): 王坚俊,孙林涛,刘昌标,刘江明,周国伟,郭创新
WANG Jianjun,SUN Lintao,LIU Changbiao,LIU Jiangming,ZHOU Guowei,GUO Chuangxin

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享