基于关键特征优化的电力系统短期负荷预测方法Short-term load forecasting method for power system based on key feature optimization
朱耿,王波,贺旭,虞殷树,白文博
ZHU Geng,WANG Bo,HE Xu,YU Yinshu,BAI Wenbo
摘要(Abstract):
短期电力负荷的准确预测是电力系统安全经济运行的重要条件。为了提高电力系统短期负荷预测的准确性,提出一种基于关键特征优化的电力系统短期负荷预测方法。首先,对影响电力系统短期负荷的气象特征、日类型特征和历史负荷特征的构建方法进行优化,为负荷预测模型提供更多先验知识;然后,考虑输入特征和输出预测向量的特点,构建结合卷积神经网络与全连接层的短期电力负荷预测模型;最后,通过算例验证基于关键特征优化的电力系统短期负荷预测方法在实际负荷预测任务中的效果。算例结果表明,对气象特征、日类型特征和历史负荷特征等关键特征的优化,均有利于提升电力系统短期负荷预测的准确性。
Accurate forecasting of short-term power load is an important condition for the safe and economic operation of the power system. To improve the accuracy of short-term load forecasting for the power system, a short-term load forecasting method based on key feature optimization is proposed. Firstly, the construction method of the meteorological features, daily type features and historical load features affecting the short-term load of the power system is optimized, which can provide more prior knowledge for the load forecasting model. Then, considering the characteristics of the input features and the output prediction vector, a short-term power load forecasting model combining the convolutional neural network and the fully connected layer is constructed. Finally, the effect of the short-term load forecasting method for the power system based on the key feature optimization in the actual load forecasting task is validated by a numerical example. The example result shows that the key feature optimization of meteorological features, daily type features and historical load features is conducive to improving the accuracy of the short-term load forecasting for the power system.
关键词(KeyWords):
特征优化;负荷预测;卷积神经网络;全连接层
feature optimization;load forecasting;convolutional neural network;fully connected layer
基金项目(Foundation): 宁波永耀电力投资集团有限公司科技项目(CY820400QT20210652)
作者(Author):
朱耿,王波,贺旭,虞殷树,白文博
ZHU Geng,WANG Bo,HE Xu,YU Yinshu,BAI Wenbo
DOI: 10.19585/j.zjdl.202308006
参考文献(References):
- [1]马梦冬,彭道刚,王丹豪.基于EEMD-LSTM的区域能源短期负荷预测[J].浙江电力,2020,39(4):29-35.MA Mengdong,PENG Daogang,WANG Danhao.Shortterm load forecasting based on EEMD-LSTM for regional energy[J].Zhejiang Electric Power,2020,39(4):29-35.
- [2]王威,王波,何宇,等.基于负荷分解和灰色理论的电网最大负荷预测[J].浙江电力,2018,37(8):48-53.WANG Wei,WANG Bo,HE Yu,et al. Maximum grid load forecasting based on load decomposition and grey theory[J].Zhejiang Electric Power,2018,37(8):48-53.
- [3]孔祥玉,李闯,郑锋,等.基于经验模态分解与特征相关分析的短期负荷预测方法[J].电力系统自动化,2019,43(5):46-56.KONG Xiangyu,LI Chuang,ZHENG Feng,et al.Shortterm load forecasting method based on empirical mode decomposition and feature correlation analysis[J]. Automation of Electric Power Systems,2019,43(5):46-56.
- [4]王增平,赵兵,贾欣,等.基于差分分解和误差补偿的短期电力负荷预测方法[J].电网技术,2021,45(7):2560-2568.WANG Zengping,ZHAO Bing,JIA Xin,et al.Short-term power load forecasting method based on differential decomposition and error compensation[J]. Power System Technology,2021,45(7):2560-2568.
- [5]蒋敏,顾东健,孔军,等.基于在线序列极限支持向量回归的短期负荷预测模型[J].电网技术,2018,42(7):2240-2247.JIANG Min,GU Dongjian,KONG Jun,et al.Short-term load forecasting model based on online sequential limit support vector regression[J].Power System Technology,2018,42(7):2240-2247.
- [6]杨智宇,刘俊勇,刘友波,等.基于自适应深度信念网络的变电站负荷预测[J].中国电机工程学报,2019,39(14):4049-4060.YANG Zhiyu,LIU Junyong,LIU Youbo,et al. Transformer load forecasting based on adaptive deep belief network[J].Proceedings of the CSEE,2019,39(14):4049-4060.
- [7]张宇帆,艾芊,林琳,等.基于深度长短时记忆网络的区域级超短期负荷预测方法[J].电网技术,2019,43(6):1884-1891.ZHANG Yufan,AI Qian,LIN Lin,et al. Regional ultrashort-term load forecasting method based on deep shortterm memory network[J]. Power System Technology,2019,43(6):1884-1891.
- [8]迟福建,孙阔,张章,等.网格化规划系统中电气计算核心算法的实现[J].发电技术,2022,43(6):860-868.CHI Fujian,SUN Kuo,ZHANG Zhang,et al.Implementation of core algorithm of electrical calculation in grid planning system[J]. Power Generation Technology,2022,43(6):860-868.
- [9]雷旭,马鹏飞,宋智帅,等.计及风电预测误差的柔性负荷日内调度模型[J].发电技术,2022,43(3):485-491.LEI Xu,MA Pengfei,SONG Zhishuai,et al.A Flexible intraday load dispatch model considering wind power prediction errors[J]. Power Generation Technology,2022,43(3):485-491.
- [10]林启开,王珂,陈文学,等.基于城市居民峰谷电价响应特性的超短期负荷预测研究[J].山东电力技术,2020,47(4):5-9.LIN Qikai,WANG Ke,CHEN Wenxue,et al. Research on ultra short term load forecasting based on response characteristics of urban resident under the peak-valley electricity Price[J].Shandong Electric Power,2020,47(4):5-9.
- [11]刘炬,刘闯,徐达,等.基于综合气象指数的EA-SNN组合负荷预测模型[J].山东电力技术,2022,49(8):10-14.LIU Ju,LIU Chuang,XU Da,LI Jun,et al.EA-SNN combined load forecasting model based on comprehensive meteorological index[J].Shandong Electric Power,2022,49(8):10-14.
- [12]孙昀昀,王连成.基于LSTM的钢铁工业地区母线短期负荷预测研究[J].山东电力技术,2020,47(8):33-37.SUN Yunyun,WANG Liancheng.Research on short-term bus load forecasting in the steel industry area based on LSTM[J].Shandong Electric Power,2020,47(8):33-37.
- [13]范金骥.基于ARMA与ANN模型组合交叉方法的电网日负荷预测[J].浙江电力,2018,37(8):35-41.FAN Jinji. Daily grid load forecasting based on ARMA and ANN model combined crossing method[J]. Zhejiang Electric Power,2018,37(8):35-41.
- [14]应张驰,陈淑萍,卢旭航.基于多源信息的短期负荷混合预测模型应用研究[J].浙江电力,2019,38(9)100-104YING Zhangchi,CHEN Shuping,LU Xuhang. Study on application of short-term hybrid load forecasting model based on multi-source information[J]. Zhejiang Electric Power,2019,38(9):100-104.
- [15]庞昊,高金峰,杜耀恒.基于多神经网络融合的短期负荷预测方法[J].电力自动化设备,2020,40(6):37-42.PANG Hao,GAO Jinfeng,DU Yaoheng.Short-term load forecasting method based on fusion of multiple neural networks[J]. Electric Power Automation Equipment,2020,40(6):37-42.
- [16]陆继翔,张琪培,杨志宏,等.基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J].电力系统自动化,2019,43(8):131-137.LU Jixiang,ZHANG Qipei,YANG Zhihong,et al.Shortterm load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems,2019,43(8):131-137.
- [17]史佳琪,张建华.基于多模型融合Stacking集成学习方式的负荷预测方法[J].中国电机工程学报,2019,39(14):4032-4041.SHI Jiaqi,ZHANG Jianhua. Load forecasting method based on multi-model fusion Stacking integrated learning mode[J].Proceedings of the CSEE,2019,39(14):4032-4041.
- [18]蔡舒平,张保会,汤大海,等.短期负荷预测中气象因素处理的费歇信息方法[J].电力自动化设备,2020,40(3):141-146.CAI Shuping,ZHANG Baohui,TANG Dahai,et al.Fisher information method for processing weather factors in short-term load forecasting[J].Electric Power Automation Equipment,2020,40(3):141-146.
- [19]刘伟,张锐锋,彭道刚.基于K-Adaboost数据挖掘的配电网负荷预测[J].浙江电力,2019,38(1):104-110.LIU W,ZHANG R F,PENG D G. Load forecasting of distribution network based on K-adaboost data mining[J].Zhejiang Electric Power,2019,38(1):104-110.
- [20]郑瑞骁,张姝,肖先勇,等.考虑温度模糊化的多层长短时记忆神经网络短期负荷预测[J].电力自动化设备,2020,40(10):181-186.ZHENG Ruixiao,ZHANG Shu,XIAO Xianyong,et al.Short-term load forecasting of multi-layer long-term and short-term memory neural network considering temperature fuzziness[J].Electric Power Automation Equipment,2020,40(10):181-186.
- [21] CHEN H,CANIZARES C A,SINGH A. ANN-based short-term load forecasting in electricity markets[C]//Proceedings of 2001 IEEE Power Engineering Society Winter Meeting,January 28-February 1,2001,Columbus,OH,USA:411-415.
- [22]黄冬梅,庄兴科,胡安铎,等.基于灰色关联分析和K均值聚类的短期负荷预测[J].电力建设,2021,42(7):110-117.HUANG Dongmei,ZHUANG Xingke,HU Anduo,et al.Short-term load forecasting based on similar-day selection with GRA-K-means[J]. Electric Power Construction,2021,42(7):110-117.
- [23]孔祥玉,郑锋,鄂志君,等.基于深度信念网络的短期负荷预测方法[J].电力系统自动化,2018,42(5):133-139.KONG Xiangyu,ZHENG Feng,E Zhijun,et al. Shortterm load forecasting based on deep belief network[J].Automation of Electric Power Systems,2018,42(5):133-139.