金丝接地极偏磁治理对浙江电网GIC的影响Influence of Jinsi Grounding Electrode Magnetic Bias Control on the GIC of Zhejiang Power Grid
曹力潭,焦晨骅,沈正元,孙林涛,田硕,年长春
CAO Litan,JIAO Chenhua,SHEN Zhengyuan,SUN Lintao,TIAN Shuo,NIAN Changchun
摘要(Abstract):
直流输电工程建设中大量采用电容隔离装置治理偏磁电流,这种治理方法会导致电网GIC(地磁感应电流)的重新分布,使电网发生地磁暴事故或灾害的风险增加。针对溪洛渡—浙西±800 kV直流工程金丝接地极近区的电网,建立了500 kV电网的GIC模型,根据1989年3月13日、 2004年11月7日及2017年9月7日GMD(地磁扰动)数据,分别计算了电容隔离装置投入前后电网的GIC水平。研究结果表明,采用电容隔离装置治理后,500 kV某变电站变压器中性点的GIC从10 A水平增大为90 A水平,使该变电站成为GIC事故高风险站点。
Capacitive isolators, widely used to control magnetic bias current in construction of Ultra-high voltage direct current(UHVDC) transmission projects, may lead to the redistribution of geomagnetically induced current(GIC) in power grid and multiple the risk of geomagnetic storms and disasters. The GIC model of the 500 kV power grid is established for the power grid near the Jinsi grounding electrode, which is the grounding electrode of Xiluodu-West Zhejiang ±800 kV UHVDC project. A GIC model for 500 kV power grids is built according to the power grid adjacent to Jinsi grounding electrode of the ±800 kV Luoxidu-Zhexi DC transmission project. Based on the geomagnetic disturbance(GMD) data of March 13, 1989, November7, 2004, and September 7, 2017, the GIC levels of the power grid before and after the capacitive isolators were put into operation. The results show that the GIC of 500 kV Ninghai substation transformer neutral point increases from 10 A to 90 A after capacitor isolators were adopted, and 500 kV Ninghai station, therefore,became highly risky.
关键词(KeyWords):
UHVDC;地磁感应电流;电容隔直装置;偏磁治理
UHVDC;geomagnetically induced current;capacitive isolator;magnetic bias control
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211MR190042)
作者(Author):
曹力潭,焦晨骅,沈正元,孙林涛,田硕,年长春
CAO Litan,JIAO Chenhua,SHEN Zhengyuan,SUN Lintao,TIAN Shuo,NIAN Changchun
DOI: 10.19585/j.zjdl.202107005
参考文献(References):
- [1]何文林,孙翔,邹国平,等.直流偏磁对中性点接地变压器衍生影响的检测分析[J].浙江电力,2014,33(10):1-5.
- [2]董晓辉,杜忠东,徐勇,等.直流接地极入地电流对交流变压器的影响[J].高电压技术,2007,33(12):134-138.
- [3]KAPPERNMAN J G,ALBERTSON V D.Bracing for the geomagnetic storms[J].IEEE Spectrum,1990,27(3):27-33.
- [4]BOLDUC L,LANGLOISP.A study of geoelectromagnetic disturbances in Quebec.I.General results[J].IEEE Transactions on Power Delivery,1998,13(4):1251-1256.
- [5]张建平,潘星.500 kV变压器异常噪声与振动的原因分析[J].浙江电力,2006,25(3):6-10.
- [6]蒯狄正,刘成民,万达.直流偏磁对变压器影响的研究[J].江苏电机工程,2004,23(3):1-5.
- [7]刘连光,刘春明,张冰,等.中国广东电网的几次强磁暴影响事件[J].地球物理学报,2008,51(4):976-981.
- [8]刘连光.灾害空间天气对我国电网安全的影响及风险[J].中国工程科学,2010,12(9):29-33.
- [9]王华伟,林少伯,王祖力,等,溪浙特高压直流隔直装置存在的问题分析及改进[J].电网技术,2015,39(6):1600-1604.
- [10]刘连光,姜克如,李洋,等.直流接地极近区三维大地电阻率模型建立方法[J].中国电机工程学报,2018,38(6):1622-1630.
- [11]刘春明,王璇,刘连光,等.考虑海岸效应影响的电网地磁感应电流的计算方法[J].中国电机工程学报,2016,36(22):6059-6066.
- [12]郑宽,刘连光,BOTELER D H,等.多电压等级电网的GIC-Benchmark建模方法[J].中国电机工程学报,2013,33(16):179-186.
- [13]刘连光,刘宗歧,张建华.地磁感应电流对我国电网影响的初步分析[J].中国电力,2004,37(11):10-15.
- [14]LIU C M,LIU L G,PIRJOLA R,et al.Calculation of geomagnetically induced currents in mid-to low-latitude power grids based on the plane wave method:A preliminary case study[J].Space Weather,2016,7:S04005.
- [15]刘连光,王开让,郭世晓,等.双电压等级电网GIC的相互作用特征[J].中国科学:技术科学,2015(12):1311-1320.
- [16]HORTON R,BOTELER H D,PIRJOLA R,et al.A test case for the calculation of geomagnetically induced currents[J].IEEE Transactions on Power Delivery,2012,27(4):2368-2373.
- [17]寇正,付宏力,何文浩,等.变电站直流偏磁综合仿真方法分析[J].内蒙古电力技术,2020,38(6):39-43.
- [18]李舟,何安阳,王辉,等.变压器复杂电磁暂态下涌流特征及其对差动保护影响分析[J].四川电力技术,2020,43(4):9-14.