基于时序生产模拟的需求侧响应促进新能源消纳量化分析Quantitative analysis of renewable energy consumption promoted by demand-side response based on time-series production simulation
傅铮,王峰,王若宇,吴昊亮,李海波,张蕾
FU Zheng,WANG Feng,WANG Ruoyu,WU Haoliang,LI Haibo,ZHANG Lei
摘要(Abstract):
高比例新能源接入导致电力系统对灵活性资源的需求日益迫切,需求侧灵活性资源重要性凸显。现有的需求侧响应研究多针对尖峰负荷问题,对需求侧响应资源促进新能源消纳的量化研究不足。针对这一问题,首先建立多类型需求侧单体灵活性资源调节模型;其次,分析需求侧单体灵活性资源调节特性,建立海量需求侧单体灵活性资源聚合调节模型;然后,构建基于时序生产模拟的需求侧响应促进新能源消纳量化分析模型;最后,以省级电网为算例开展仿真研究,分析多类型需求侧响应对新能源消纳的改善效果。结果表明,可平移负荷、可转移负荷均可改善新能源消纳能力。
The integration of high proportions of renewable energy into power systems has led to an increasing demand for flexible resources, highlighting the importance of flexible resources on demand side. Current research on demand-side response primarily focuses on peak load and lacks quantitative analysis on how demand-side response resources can enhance renewable energy consumption. To address this gap, this paper first develops a regulation model for various flexible single resources on demand side. Subsequently, it analyzes the regulation characteristics of single flexible resources and establishes an aggregation regulation model for a large number of these resources.The paper then constructs a quantitative analysis model of renewable energy consumption promoted by demand-side response based on time-series production simulation. Finally, it conducts a simulation study using a provincial power grid as a case study to analyze the impact of various types of demand-side response on improving renewable energy consumption. The results show that both shiftable load(SL) and transferable load(TL) can help enhance renewable energy consumption.
关键词(KeyWords):
需求侧响应;新能源消纳;可平移负荷;可转移负荷;可削减负荷;时序生产模拟
demand-side response;new energy consumption;SL;TL;curtailable load;time-series production simulation
基金项目(Foundation): 甘肃电力咨询项目(B7272223XT8200M2400000);; 甘肃省科技重大专项计划(22ZD6GA032);; 国网甘肃省电力公司经济技术研究院管理咨询项目(SGGSJY00XXWT2310040)
作者(Author):
傅铮,王峰,王若宇,吴昊亮,李海波,张蕾
FU Zheng,WANG Feng,WANG Ruoyu,WU Haoliang,LI Haibo,ZHANG Lei
DOI: 10.19585/j.zjdl.202409005
参考文献(References):
- [1]李海波,鲁宗相,乔颖,等.大规模风电并网的电力系统运行灵活性评估[J].电网技术,2015,39(6):1672-1678.LI Haibo,LU Zongxiang,QIAO Ying,et al.Assessment on operational flexibility of power grid with grid-connected large-scale wind farms[J]. Power System Technology,2015,39(6):1672-1678.
- [2]李海波,鲁宗相,乔颖.源荷储一体化的广义灵活电源双层统筹规划[J].电力系统自动化,2017,41(21):46-54.LI Haibo,LU Zongxiang,QIAO Ying. Bi-level optimal planning of generation-load-storage integrated generalized flexibility resource[J].Automation of Electric Power Systems,2017,41(21):46-54.
- [3]易文飞,张艺伟,曾博,等.多形态激励型需求侧响应协同平衡可再生能源波动的鲁棒优化配置[J].电工技术学报,2018,33(23):5541-5554.YI Wenfei,ZHANG Yiwei,ZENG Bo,et al.Robust optimization allocation for multi-type incentive-based demand response collaboration to balance renewable energy fluctuations[J]. Transactions of China Electrotechnical Society,2018,33(23):5541-5554.
- [4]赵波,汪湘晋,张雪松,等.考虑需求侧响应及不确定性的微电网双层优化配置方法[J].电工技术学报,2018,33(14):3284-3295.ZHAO Bo,WANG Xiangjin,ZHANG Xuesong,et al.Two-layer method of microgrid optimal sizing considering demand-side response and uncertainties[J]. Transactions of China Electrotechnical Society,2018,33(14):3284-3295.
- [5]姚宇,叶承晋,朱超,等.考虑需求侧快速响应资源的数据驱动频率约束经济调度[J].电力系统保护与控制,2023,51(2):34-45.YAO Yu,YE Chengjin,ZHU Chao,et al.Data-driven frequency constrained economic dispatch considering fast demand resources[J].Power System Protection and Control,2023,51(2):34-45.
- [6]陈倩,王维庆,王海云.基于需求侧响应的主动配电网双层优化方法[J].电力系统保护与控制,2022,50(16):1-13.CHEN Qian,WANG Weiqing,WANG Haiyun. Bi-level optimization model of an active distribution network based on demand response[J]. Power System Protection and Control,2022,50(16):1-13.
- [7]朱珂言,王玮,李雪寒.计及需求侧资源主动响应的含风电互联系统负荷频率控制[J].科学技术与工程,2022,22(20):8708-8717.ZHU Keyan,WANG Wei,LI Xuehan. Load frequency control of wind power interconnected system considering active response of demand side resources[J]. Science Technology and Engineering,2022,22(20):8708-8717.
- [8]陈中瑶,林凯颖,王蓓蓓,等.单侧放开市场中基于Stackelberg均衡分析的最低效率损失需求响应激励机制设计[J].电网技术,2022,46(5):1790-1800.CHEN Zhongyao,LIN Kaiying,WANG Beibei,et al.Design of demand response incentive mechanism considering lowest efficiency loss based on stackelberg equilibrium analysis in unilateral liberalization market[J].Power System Technology,2022,46(5):1790-1800.
- [9]周星月,黄向敏,张勇军,等.基于需求响应潜力模糊评估的电动汽车实时调控优化模型[J].电力自动化设备,2022,42(10):30-37.ZHOU Xingyue,HUANG Xiangmin,ZHANG Yongjun,et al.Real-time scheduling and optimization model of electric vehicles based on fuzzy evaluation of demand response potential[J]. Electric Power Automation Equipment,2022,42(10):30-37.
- [10]袁桂丽,刘培德,唐福斌,等.计及绿色电力证书与碳交易制度的“源-荷”协调优化调度[J].太阳能学报,2022,43(6):190-195.YUAN Guili,LIU Peide,TANG Fubin,et al.Source-load coordination optimal scheduling considering green power certificate and carbon trading mechanisms[J].Acta Energiae Solaris Sinica,2022,43(6):190-195.
- [11]贾海清,林延平,刘茹,等.考虑需求侧无功不确定性的负荷聚合商运营优化模型[J].太阳能学报,2022,43(6):17-23.JIA Haiqing,LIN Yanping,LIU Ru,et al.Load aggregator operation optimization model considering demand response uncertainty[J].Acta Energiae Solaris Sinica,2022,43(6):17-23.
- [12]魏大钧,张承慧,孙波,等.基于分时电价的电动汽车充放电多目标优化调度[J].电网技术,2014,38(11):2972-2977.WEI Dajun,ZHANG Chenghui,SUN Bo,et al.A time-ofuse price based multi-objective optimal dispatching for charging and discharging of electric vehicles[J]. Power System Technology,2014,38(11):2972-2977.
- [13]胡荣,张宓璐,李振坤,等.计及可平移负荷的分布式冷热电联供系统优化运行[J].电网技术,2018,42(3):715-721.HU Rong,ZHANG Milu,LI Zhenkun,et al.Optimal operation for CCHP system considering shiftable loads[J].Power System Technology,2018,42(3):715-721.
- [14] CONEJO A J,MORALES J M,BARINGO L.Real-time demand response model[J].IEEE Transactions on Smart Grid,2010,1(3):236-242.
- [15]刘洪,郑楠,葛少云,等.内嵌需求响应与优化运行策略的主动配电系统源网协同规划[J].电力系统自动化,2020,44(3):89-97.LIU Hong,ZHENG Nan,GE Shaoyun,et al.Coordinated planning of source and network in active distribution system with demand response and optimized operation strategy[J].Automation of Electric Power Systems,2020,44(3):89-97.
- [16]胡江溢,郑涛,金玉龙,等.计及用户决策不确定性与调频备用需求的空调负荷聚合策略[J].电网技术,2022,46(9):3534-3542.HU Jiangyi,ZHENG Tao,JIN Yulong,et al.An aggregation strategy of air conditioning loads considering uncertainty of customer behavior and frequency regulation demand[J].Power System Technology,2022,46(9):3534-3542.
- [17] KHAJEHZADEH A, JAHROMI M H M,MAHMOUDIAN M,et al. Novel control framework for optimal scheduling in microgrid with demand response support under contingency events[J]. Cleaner Energy Systems,2022,3:100019.
- [18] NI L N,LIU W J,WEN F S,et al.Optimal operation of electricity,natural gas and heat systems considering integrated demand responses and diversified storage devices[J].Journal of Modern Power Systems and Clean Energy,2018,6(3):423-437.
- [19] DOLATABADI A,MOHAMMADI-IVATLOO B.Stochastic risk-constrained scheduling of smart energy hub in the presence of wind power and demand response[J].Applied Thermal Engineering,2017,123:40-49.
- [20] ZHONG H W,XIE L,XIA Q.Coupon incentive-based demand response:theory and case study[J].IEEE Transactions on Power Systems,2013,28(2):1266-1276.
- [21] PARVANIA M, FOTUHI-FIRUZABAD M,SHAHIDEHPOUR M. Optimal demand response aggregation in wholesale electricity markets[J].IEEE Transactions on Smart Grid,2013,4(4):1957-1965.
- [22] STLUKA P,GODBOLE D,SAMAD T.Energy management for buildings and microgrids[C]//IEEE Conference on Decision and Control and European Control Conference. December 12-15,2011. Orlando,FL,USA:IEEE,2011:5150-5157.
- [23]任鑫芳,张志朝,许李天伦,等.计及电动汽车与温控负荷需求响应的分层能源系统优化调度[J].电力建设,2022,43(9):77-86.REN Xinfang,ZHANG Zhichao,XU Litianlun,et al.Optimal scheduling of hierarchical energy systems with electric vehicles and temperature-controlled load demand response[J].Electric Power Construction,2022,43(9):77-86.
- [24]祁兵,曹望璋,李彬,等.计及负载特征及响应特性的多数据中心双层优化模型[J].电力系统自动化,2022,46(21):30-41.QI Bing,CAO Wangzhang,LI Bin,et al.Bi-level optimization model of multiple data centers considering workload features and response characteristics[J]. Automation of Electric Power Systems,2022,46(21):30-41.
- [25]雍培,张宁,慈松,等.5G通信基站参与需求响应:关键技术与前景展望[J].中国电机工程学报,2021,41(16):5540-5552.YONG Pei,ZHANG Ning,CI Song,et al.5G communication base stations participating in demand response:key technologies and prospects[J].Proceedings of the CSEE,2021,41(16):5540-5552.
- [26]刘蓉晖,李子林,杨秀,等.考虑用户侧柔性负荷的社区综合能源系统日前优化调度[J].太阳能学报,2019,40(10):2842-2850.LIU Ronghui,LI Zilin,YANG Xiu,et al.Optimal dispatch of community integrated energy system considering userside flexible load[J].Acta Energiae Solaris Sinica,2019,40(10):2842-2850.
- 需求侧响应
- 新能源消纳
- 可平移负荷
- 可转移负荷
- 可削减负荷
- 时序生产模拟
demand-side response - new energy consumption
- SL
- TL
- curtailable load
- time-series production simulation