海上风力发电及送出技术与就地制氢的发展概述A General Survey of Offshore Wind Power Generation and Transmission Technologies and Local Hydrogen Production
王秀丽,赵勃扬,郑伊俊,宁联辉,杨勇
WANG Xiuli,ZHAO Boyang,ZHENG Yijun,NING Lianhui,YANG Yong
摘要(Abstract):
风力发电是实现"双碳"目标的有效途径之一,通过对海上风电发电技术和送出技术的最新进展进行总结归纳,分析海上风电的发展现状和趋势,分别对新一代海上风机、漂浮式海上风电技术、海上风电制氢、集电系统设计、工频并网改进和新型并网送出方式的研究方向和发展前景进行阐述,对海上风电发展技术进行总结,指出了海上风电技术的发展趋势,为进一步开展海上风电的研究指明方向。
Wind power is one of the effective ways to achieve "dual carbon" goals. The paper, by summarizing the latest progress in offshore wind power generation technologies, analyzes the development status and trend of offshore wind power. Moreover, it expounds on research interest and development outlook of new offshore wind turbines, floating offshore wind power technology, hydrogen production on the spot, collection system design, power frequency integration improvements and transmission modes under new integration are discussed respectively. Finally, the paper summarizes the development technology of offshore wind power and indicates its development trend, which charts the orientation and road to offshore wind power research.
关键词(KeyWords):
海上风电;发电技术;送出技术
offshore wind power;power generation technology;power transmission technology
基金项目(Foundation): 国家电网公司总部科技项目(SGGSKY00DLJS200314)
作者(Author):
王秀丽,赵勃扬,郑伊俊,宁联辉,杨勇
WANG Xiuli,ZHAO Boyang,ZHENG Yijun,NING Lianhui,YANG Yong
DOI: 10.19585/j.zjdl.202110001
参考文献(References):
- [1]WANG Q,YU Z P,YE R,et al.An ordered curtailment strategy for offshore wind power under extreme weather conditions considering the resilience of the grid[J].IEEEAccess,2019,7:54824-54833.
- [2]傅质馨,赵敏,袁越,等.基于无线传感网络的海上风电机组状态监测系统构建方法[J].电力系统自动化,2014,38(7):23-28.
- [3]RIAZ M M,KHAN B H.Studies on integration of different capacity offshore wind farms in power grid[J].Wind Engineering,2020.https://doi.org/10.1177/0309524X20978494.
- [4]苏匀,马小婷,李少华.海上风电送出交流故障穿越控制策略研究[J].电工电气,2021(4):11-16.
- [5]廖圣瑄,陈可仁.能源岛:深远海域海上风电破局关键[J].能源,2021(5):46-49.
- [6]王秀丽,赵勃扬,黄明煌,等.大规模深远海风电送出方式比较及集成设计关键技术研究[J].全球能源互联网,2019,2(2):138-145.
- [7]孙瑞娟,梁军,王克文,等.海上风电集电系统研究综述[J].电力建设,2021,42(6):105-115.
- [8]Global Wind Energy Council.Global-Offshore-Wind-Report[R/OL].(2020-08-05)[2021-07-18].https://gwec.net/global-offshore-wind-report-2020/.
- [9]Global Wind Energy Council.Global-Wind-Report[R/OL].(2021-03-24)[2021-07-18].https://gwec.net/global-windreport-2021/.
- [10]Wood Mackenzie.Global wind turbine OEMs 2020 market shares[R/OL].(2021-04-05)[2021-07-18].https://www.woodmac.com/reports/power-markets-global-wind-turbine-oems-2020-market-shares-480751.
- [11]SETHURAMAN L,VIJAYAKUMAR G,ANANTHAN S,et al.MADE3D:Enabling the next generation of high-torque density wind generators by additive design and 3D printing[J].Forschung Im Ingenieurwesen-Engineering Research,2021,85(2):287-311.
- [12]Office of Energy Efficiency&Renewable Energy.Department of energy selects projects to develop high-efficiency,lightweight wind turbine generators for tall wind and offshore applications[EB/OL].(2021-01-20)[2021-07-18].https://www.energy.gov/eere/articles/department-ener gyselects-projects-develop-high-efficiency-lightweightwind-turbine.
- [13]俞晓峰,王倩,李子林,等.深远海域海上风电工程风险和不确定因素研究[J].风能,2018(2):52-55.
- [14]张佳丽,李少彦.海上风电产业现状及未来发展趋势展望[J].风能,2018(10):48-52.
- [15]陈嘉豪,裴爱国,马兆荣,等.海上漂浮式风机关键技术研究进展[J].南方能源建设,2020,7(1):8-20.
- [16]万德成,程萍,黄扬,等.海上浮式风机气动力-水动力耦合分析研究进展[J].力学季刊,2017,38(3):385-407.
- [17]WIDERA B.Renewable hydrogen implementations for combined energy storage,transportation and stationary applications[J].Thermal Science and Engineering Progress,2020,16:100460
- [18]吉力强,赵英朋,王凡,等.氢能技术现状及其在储能发电领域的应用[J].金属功能材料,2019,26(6):23-31.
- [19]蒋敏华,肖平,刘入维,等.氢能在我国未来能源系统中的角色定位及“再电气化”路径初探[J].热力发电,2020,49(1):1-9.
- [20]ZHANG G T,WAN X H.A wind-hydrogen energy storage system model for massive wind energy curtailment[J].International Journal of Hydrogen Energy,2014,39(3):1243-1252.
- [21]易伟,徐建源,吴冠男,等.利用风电制氢储能系统提高东北某区域电网弃风消纳能力[J].电力电容器与无功补偿,2018,39(4):190-197.
- [22]TAKAHASHI R,KINOSHITA H,MURATA T,et al.Output power smoothing and hydrogen production by using variable speed wind generators[J].Ieee Transactions on Industrial Electronics,2010,57(2):485-493.
- [23]GONZALEZ A,MCKEOGH E,GALLACHOIR B O.The role of hydrogen in high wind energy penetration electricity systems:The Irish case[J].Renewable Energy,2004,29(4):471-489.
- [24]CALADO G,CASTRO R.Hydrogen production from offshore wind parks:current situation and future perspectives[J].Applied Sciences,2021,11(12)5561-5579.
- [25]CRIVELLARI A,COZZANI V.Offshore renewable energy exploitation strategies in remote areas by power-to-gas and power-to-liquid conversion[J].International Journal of Hydrogen Energy,2020,45(4):2936-2953.
- [26]MELAINA M W,ANTONIA O,PENEV M.Blending hydrogen into natural gas pipeline networks:a review of key issues[J].Contract,2013,303:275-300.
- [27]QUARTON C J,SAMSATLI S.Power-to-gas for injection into the gas grid:What can we learn from real-life projects,economic assessments and systems modelling[J].Renewable and Sustainable Energy Reviews,2018,98:302-316.
- [28]谭振龙,张伶俐,陈希,等.远海大容量机组海上风电集电系统技术经济研究[J].电气应用,2021,40(6):64-71.
- [29]王锡凡,王碧阳,王秀丽,等.面向低碳的海上风电系统优化规划研究[J].电力系统自动化,2014,38(17):4-13.
- [30]陈宁.大型海上风电场集电系统优化研究[D].上海:上海电力学院,2011.
- [31]赵东来,牛东晓,杨尚东,等.基于改进遗传算法的海上风电场消纳拓扑结构优化模型[J].中南大学学报(自然科学版),2019,50(4):998-1004.
- [32]李芃达,李东东.海上风电场集电系统拓扑结构优化研究[J].电力系统保护与控制,2016,44(18):102-107.
- [33]PEREZ-RUA J A,LUMBRERAS S,RAMOS A,et al.Reliability-based topology optimization for offshore wind farm collection system[J].Wind Energy,2021:1-19.https://doi.org/10.1002/we.2660.
- [34]谭任深,杨苹,贺鹏,等.考虑电气故障和开关配置方案的海上风电场集电系统可靠性及灵敏度研究[J].电网技术,2013,37(8):2264-2270.
- [35]陈献慧,王冰,邓红峰,等.海上风电场环形拓扑结构集电系统开关配置分析[J].可再生能源,2019,37(2):205-211.
- [36]王邦彦,王秀丽,宁联辉.海上风电场集电系统开关配置最优化及可靠性评估[J].供用电,2021,38(4):43-51.
- [37]周琼芳.基于平价上网的海上风电运维策略分析[J].科技创新与应用,2019(22):126-128.
- [38]王锡凡,刘沈全,宋卓彦,等.分频海上风电系统的技术经济分析[J].电力系统自动化,2015,39(3):43-50.
- [39]吴伊雯.基于混合生态共生算法的海上风电场集电线路优化方法研究[D].北京:华北电力大学,2020.
- [40]NEUMANN A P,MULROY M J,EBDEN C.The Use of66 kV technology for Offshore Wind Demonstration sites[C]//3rd Renewable Power Generation Conference (RPG2014),Naples,2014:1-6.
- [41]蔡蓉,张立波,程濛,等.66 kV海上风电交流集电方案技术经济性研究[J].全球能源互联网,2019,2(2):155-162.
- [42]吕杰,杨维稼,黄玮,等.66 kV交流接入海上换流站方案的技术经济性[J].中国电力,2020,53(7):72-79.
- [43]王峰,芮守娟,王小合,等.66 kV海上风电交流集电方案的研究与发展前景[J].华电技术,2020,42(5):61-65.
- [44]袁兆祥,仇卫东,齐立忠.大型海上风电场并网接入方案研究[J].电力建设,2015,36(4):123-128.
- [45]王鑫,王海云,王维庆.大规模海上风电场电力输送方式研究[J].电测与仪表,2020,57(22):55-62.
- [46]ELLIOTT D,BELL K R W,FINNEY S J,et al.A comparison of AC and HVDC options for the connection of offshore wind generation in great britain[J].Ieee Transactions on Power Delivery,2016,31(2):798-809.
- [47]郭霁月.大型海上风电场接入方案及对电网稳定性影响研究[D].西安:西安理工大学,2018.
- [48]鲁加明,赵云,郑明,等.无功配置对海上风电场输出海缆损耗的影响分析[J].电力建设,2015,36(6):114-118.
- [49]陈柏超,罗璇瑶,袁佳歆,等.考虑工频过电压的海上风电场无功配置方案研究[J].电测与仪表,2018,55(13):78-83.
- [50]杨源,阳熹,谭江平,等.海上风电场无功配置优化方案[J].中国电力,2020,53(11):195-201.
- [51]TIAN X,LI Y,GUO M,et al.Active power and reactive power FRT coordinated control strategy of offShore wind farms connected to power grid with AC cables[C]//2018International Conference on Power System Technology(POWERCON),2018:1249-1255.
- [52]王锡凡,卫晓辉,宁联辉,等.海上风电并网与输送方案比较[J].中国电机工程学报,2014,34(31):5459-5466.
- [53]迟永宁,梁伟,张占奎,等.大规模海上风电输电与并网关键技术研究综述[J].中国电机工程学报,2016,36(14):3758-3771.
- [54]RAHMAN S,KHAN I,ALKHAMMASH H I,et al.A comparison review on transmission mode for onshore integration of offshore wind farms:HVDC or HVAC[J].Electronics,2021,10(12):1489-1503.
- [55]李少华,王秀丽,李泰,等.混合式MMC及其直流故障穿越策略优化[J].中国电机工程学报,2016,36(7):1849-1858.
- [56]TORRES-OLGUIN R E,MOLINAS M,UNDELAND T.Offshore wind farm grid integration by VSC technology with LCC-based HVDC transmission[J].Ieee Transactions on Sustainable Energy,2012,3(4):899-907.
- [57]BERNAL-PEREZ S,VILLALBA S A,BLASCO-GIMENEZR.Stability analysis of HVDC-diode rectifier connected off-shore wind power plants[C].IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society,2015:004040-004045.
- [58]WANG X F.The fractional frequency transmission system[J].IEE Japan Power and Energy'94.Proceedings of the Fifth Annual Conference of Power and Energy Society IEEJapan(Sessions I-J and I-E),1994(2):53-58.
- [59]LI J,ZHANG X-P.Small signal stability of fractional frequency transmission system with offshore wind farms[J].Ieee Transactions on Sustainable Energy,2016,7(4):1538-1546.
- [60]黄明煌,王秀丽,刘沈全,等.分频输电应用于深远海风电并网的技术经济性分析[J].电力系统自动化,2019,43(5):167-174.
- [61]MENG Y Q,LIU B,LUO H Y,et al.Control scheme of hexagonal modular multilevel direct converter for offshore wind power integration via fractional frequency transmission system[J].Journal of Modern Power Systems and Clean Energy,2018,6(1):168-180.
- [62]LIU S Q,WANG X F,MENG Y Q,et al.A decoupled control strategy of modular multilevel matrix converter for fractional frequency transmission system[J].Ieee Transactions on Power Delivery,2017,32(4):2111-2121.
- [63]ZHAO B Y,WANG X F,WANG X L,et al.Droop control for multi-terminal fractional frequency transmission sys tem with offshore wind farm integration[M].2019:1131-1134.
- [64]KOSSYVAKIS D N,CHRYSOCHOS A I,PAVLOU K,et al.Calculation of losses in three-core submarine cables for fractional frequency transmission operation[C]//2018 IEEEInternational Conference on High Voltage Engineering and Application,Athens,Greece:IEEE,2018:1-4.