浙江电力

2025, v.44;No.345(01) 24-33

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

考虑径流和价格随机相关性的水电站调度模型
A hydropower plant scheduling model considering the stochastic correlation between runoff and electricity prices

吴莹,王觉非,李俊杰,王坤,沈妍,吴英俊
WU Ying,WANG Juefei,LI Junjie,WANG Kun,SHEN Yan,WU Yingjun

摘要(Abstract):

参与中长期调度运行的水电站如何评估并应对径流与电价带来的风险是亟待解决的问题。为此,提出一种兼顾最大化预期净收益与降低中长期运行风险的水电站调度模型。首先,基于CVaR(条件风险价值)理论,利用边缘分布函数描述径流不确定性风险与电价波动风险,对市场化运营的水电站做出准确的风险评估。其次,基于LSCV(最小平方交叉验证法)思想确定核密度估计过程中的最佳带宽参数以确保对离散径流与电价数据的拟合优度。然后,采用Copula-Monte Carlo模拟方法对径流与电价联合风险项进行建模,并采用拉丁超立方采样方法提高模型计算精度。最后,通过算例仿真分析,验证了所提出模型的有效性。
Evaluating and addressing the risks posed by runoff and electricity prices in hydropower plants involved in medium-to long-term scheduling is a pressing issue. To address this, a scheduling model is proposed that aims to maximize expected net revenue while minimizing medium-to long-term operational risks. First, using the conditional value at risk(CVaR) theory, marginal distribution functions are utilized to characterize the risks of runoff uncertainty and electricity price volatility(EPV), enabling accurate risk assessment for market-operated hydropower plants. Second, the least-squares cross validation(LSCV) is applied to determine the optimal bandwidth parameter in kernel density estimation(KDE), ensuring a good fit for discrete runoff and electricity price data. Next, a Copula-Monte Carlo simulation method is used to model the joint risks of runoff and electricity prices, with Latin hypercube sampling(LHS) employed to enhance computational precision. Finally, case simulation and analysis are conducted to validate the effectiveness of the proposed model.

关键词(KeyWords): 水电站;优化调度;径流;条件风险价值;核密度估计
hydropower plant;optimal scheduling;runoff;CVaR;KDE

Abstract:

Keywords:

基金项目(Foundation): 江苏省自然科学基金(BK20221165);; 国网浙江省电力有限公司经济技术研究院专项项目(SGZJJY00JJJS2310243)

作者(Author): 吴莹,王觉非,李俊杰,王坤,沈妍,吴英俊
WU Ying,WANG Juefei,LI Junjie,WANG Kun,SHEN Yan,WU Yingjun

DOI: 10.19585/j.zjdl.202501003

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享