基于改进鲸鱼算法的储能系统优化配置研究Study on Optimal Allocation of Energy Storage System Based on Improved WOA
杨晓雷,徐建元,陶欢,刘景,霍然,张涛,李逸鸿
YANG Xiaolei,XU Jianyuan,TAO Huan,LIU Jing,HUO Ran,ZHANG Tao,LI Yihong
摘要(Abstract):
在含大规模风电的配电网中增设储能系统能够降低风电出力波动带来的不利影响。针对储能系统在电网中安装地址及容量优化的问题,以有功网损、电压偏差及总投资成本最小为目标,建立了储能系统多目标优化配置模型。为克服鲸鱼算法求解高维多目标优化问题时易陷入局部最优的问题,引入立方混沌映射、混合蛙跳个体交流机制以及综合满意度评价机制对基本鲸鱼算法进行改进。以IEEE33节点系统为算例,采用改进的鲸鱼算法对储能优化配置模型求解,仿真结果表明,所提模型能有效对储能系统进行选址定容,提高系统经济性和安全性,同时验证了改进鲸鱼算法的准确性和有效性。
It can reduce the adverse effect from output fluctuations of wind power by installing an energy storage system in distribution networks with large-scale wind power. Given the optimization of installation location and capacity of the energy storage system in the power grid, a multi-objective optimal configuration model of the energy storage system is established to minimize active network loss, voltage deviation and total investment cost. To overcome the problem that whale optimization algorithm(WOA) is prone to fall into local optimum in solving high-dimensional multi-objective optimization, cubic chaotic map, mixed frog leaping individual communication mechanism and comprehensive satisfaction evaluation mechanism are introduced to improve the WOA. The paper takes IEEE 33 bus system as an example, the improved WOA is used to solve the optimal energy storage configuration model. The simulation results show that the proposed model can be used for location and capacity determination of energy storage system, and improve the system economy and security, and verify the accuracy and effectiveness of the improved WOA.
关键词(KeyWords):
主动配电网;分布式风电;储能系统;优化配置;改进鲸鱼算法
active distribution network;distributed wind power;energy storage system;optimal allocation;improved WOA
基金项目(Foundation): 国网浙江省电力有限公司群众性科学技术创新项目(5211JX190012)
作者(Author):
杨晓雷,徐建元,陶欢,刘景,霍然,张涛,李逸鸿
YANG Xiaolei,XU Jianyuan,TAO Huan,LIU Jing,HUO Ran,ZHANG Tao,LI Yihong
DOI: 10.19585/j.zjdl.202103017
参考文献(References):
- [1]刘澄,王辉,李天慧,等.分布式新能源发电对配电网电压影响研究[J].可再生能源,2019,37(10):1465-1471.
- [2]董振斌,李义容,李海思.考虑风电功率与需求响应不确定性的备用容量配置[J].电力需求侧管理,2017,19(1):29-34.
- [3]刘佳,孙春顺,杨江涛,等.平抑风电出力波动的混合储能系统优化策略[J].电力科学与工程,2018,34(2):38-43.
- [4]韩绍丹.含大规模风电电力系统储能优化配置研究[D].兰州:兰州交通大学,2018.
- [5]吴倩,王洋,王琳媛,等.计及波动平抑与经济性的风光储系统中混合储能容量优化配置[J/OL].电测与仪表:[2020-11-16].https://kns.cnki.net/kcms/detail/23.1202.TH.20200601.1243.018.html.
- [6]吴仁光,王云葛,李凯鹏,等.考虑季节特性及节点电压偏移的储能系统优化配置[J].电力科学与工程,2020,36(1):18-24.
- [7]严哲.基于改进ABC算法的微电网混合储能容量配置方法研究[D].武汉:湖北工业大学,2020.
- [8]孙琪,于永进,王玉彬,等.采用改进鲸鱼算法的配电网综合优化[J/OL].电力系统及其自动化学报.[2020-12-16].https://doi.org/10.19635/j.cnki.csu-epsa.000553.
- [9]施佳锋,雷海,石城.基于鲸鱼优化算法的光伏系统参数识别[J].信息技术,2020,44(10):160-165.
- [10]洪卉.基于数据挖掘与改进鲸鱼算法优化支持向量机的短期电力负荷预测[D].南昌:南昌大学,2020.
- [11]沈冠冶,李琛,徐冰亮,等.考虑风电并网系统的储能优化配置[J].东北电力大学学报,2018,38(4):27-34.
- [12]贾云辉,张峰.考虑分布式风电接入下的区域综合能源系统多元储能双层优化配置研究[J].可再生能源,2019,37(10):1524-1532.
- [13]TAHER S A,AFSARI S A.Optimal location and sizing of DSTATCOM in distribution systems by immune algorithm[J].International Journal of Electrical Power&Energy Systems,2014,60(11):34-44.
- [14]潘超,焦薇羽,孟涛,等.基于混合智能粒子群算法的广义电源主动配电网优化配置[J].电力系统保护与控制,2016,44(7):69-75.
- [15]银星黎.基于改进多目标鲸鱼算法的水库群供水-发电-生态优化调度研究[D].武汉:华中科技大学,2019.
- [16]徐岩,高兆,朱晓荣.基于混合蛙跳算法的光伏阵列参数辨识方法[J].太阳能学报,2019,40(7):1903-1911.
- [17]蒋猛,黄宇,廖伟涵,等.基于改进NSGA-Ⅱ算法的电-气-热综合能源系统多目标优化[J].发电技术,2020,41(2):131-136.
- [18]杜鹏,米增强,贾雨龙,等.基于网损灵敏度方差的配电网分布式储能位置与容量优化配置方法[J].电力系统保护与控制,2019,47(6):103-109.
- [19]曹静钰.三维点云数据的特征提取[D].大连:大连理工大学,2019.
- [20]张涛,余利,姚剑峰,等.基于改进多目标差分灰狼算法的配电网无功优化[J].信息与控制,2020,49(1):78-86.
- 主动配电网
- 分布式风电
- 储能系统
- 优化配置
- 改进鲸鱼算法
active distribution network - distributed wind power
- energy storage system
- optimal allocation
- improved WOA