浙江电力

2024, v.43;No.335(03) 65-74

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于改进BP-Bagging算法的光伏电站故障诊断方法
A fault diagnosis method for photovoltaic power plants based on an enhanced BP-Bagging algorithm

祁炜雯,张俊,吴洋,范强,赵峰,陈建国,王健
QI Weiwen,ZHANG Jun,WU Yang,FAN Qiang,ZHAO Feng,CHEN Jianguo,WANG Jian

摘要(Abstract):

针对基于机器学习算法的光伏电站故障诊断方法存在的样本数据失衡问题,提出一种基于改进BP-Bagging算法的光伏电站故障诊断方法。首先,基于BP神经网络构建光伏数据与光伏故障类型的映射关系,实现光伏故障诊断;然后,基于随机欠采样方法改进Bagging算法,解决样本的类不平衡问题;接着,针对BP网络存在的过拟合问题,提出基于改进BP-Bagging算法的光伏电站故障诊断模型,并行训练多个BP网络,根据投票法得出故障诊断结果;最后,设置不同算法对照实验,计算出关于模型准确率的评价指标,证明所提方法具有较高的综合性能,在一定程度上能够解决光伏电站故障诊断中的样本类不平衡问题,提高光伏电站故障诊断的准确率。
In response to the challenge of sample data imbalance in fault diagnosis methods for photovoltaic power plants based on machine learning, the paper proposes a fault diagnosis method leveraging an enhanced BP-Bagging algorithm. Firstly, a mapping relationship between photovoltaic data and fault types is established using a BP neural network to achieve fault diagnosis in photovoltaic systems. Subsequently, the Bagging algorithm is enhanced by utilizing random under-sampling(RUS) to address the issue of class imbalance in samples. Furthermore, to tackle the problem of overfitting in the BP network, the paper introduces a fault diagnosis model for photovoltaic power plants based on the enhanced BP-Bagging. This involves parallel training of multiple BP networks and determining fault diagnosis results through a voting method. Finally, the paper conducts comparative experiments with different algorithms, calculates evaluation metrics related to model accuracy, and validates that the proposed method demonstrates high overall performance. To a certain extent, it effectively mitigates the challenge of sample class imbalance in fault diagnosis of photovoltaic power plants, thereby improving the accuracy of fault diagnosis in such systems.

关键词(KeyWords): 光伏电站;故障诊断;随机欠采样;集成学习
photovoltaic power station;fault diagnosis;random under-sampling;ensemble learning

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211SX220001)

作者(Author): 祁炜雯,张俊,吴洋,范强,赵峰,陈建国,王健
QI Weiwen,ZHANG Jun,WU Yang,FAN Qiang,ZHAO Feng,CHEN Jianguo,WANG Jian

DOI: 10.19585/j.zjdl.202403008

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享