面向需求响应的峰谷分时定价策略量化研究Quantitative Research on Demand Response Oriented Peak-valley TOU Pricing Strategy
李建华,周灵刚
LI Jianhua,ZHOU Linggang
摘要(Abstract):
需求侧响应是增强电力系统供需平衡能力,提升网络利用效率的重要途径,其开展主要依赖有效的电价机制引导。我国目前普遍采用较为简单的峰谷电价体系,无法有效反映平衡资源稀缺程度,不利于需求响应大规模开展。通过分析柔性电力负荷的电价弹性,以削峰填谷为目标,建立了优化峰谷电划分时段和对应价格水平的运筹模型,将电网与用户获利均不能减少作为经济约束条件纳入优化模型,保证各参与方的利益,并引入遗传算法进行迭代求解,得到了颗粒度更高、资源配置能力更强的峰谷电价体系,最后通过实际算例结果证明其有效性。
Demand response(DR) is an important way to enhance the balance between electricity supply and demand in power system and improve the efficiency of network utilization. The implementation of DR projects depends on an effective electricity price mechanism. At present, a relatively simple time-of-use(TOU) system is adopted in China, which cannot effectively reflect the scarcity of balanced resource, nor is conducive to large-scale development of DR. This paper analyzes the price elasticity of flexible power loads and establishes a mathematical model to optimize the division and duration of peak valley and the corresponding price levels.The guarantee of profits of power grid and users is considered as a constraint condition is included in the optimization model to ensure the interests of all participants. The genetic algorithm(GA) is introduced to solve the problem iteratively. Finally, a peak-valley TOU pricing system with higher granularity and resource allocation capacity is obtained, and the effectiveness of the system is verified by an example.
关键词(KeyWords):
需求响应;分时电价;削峰填谷;价格弹性;优化模型
demand response;TOU;peak shaving and valley filling;price elasticity;optimization model
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211TZ1900S5)
作者(Author):
李建华,周灵刚
LI Jianhua,ZHOU Linggang
DOI: 10.19585/j.zjdl.202012008
参考文献(References):
- [1]JIE X,XIANGYU K,DEQIAN K,et al.Analysis on the implementation model of tianjin's winter demand response[C]//2018 China International Conference on Electricity Distribution(CICED).Tianjin,China:IEEE,2018:2979-2983.
- [2]刘秋华,陈洁.电力需求侧管理[M].北京:中国电力出版社,2015.
- [3]BERTOLDI P,ATANASIU B.Institute for environment and sustainability european commission,electricity consumption and efficiency trends in the enlarged european union[R].2007,Tech. Rep.
- [4]李娜.可控负荷提供系统备用的机制研究与容量评估[D].济南:山东大学,2013.
- [5]秦祯芳.零售市场中电量电价弹性系数分析[D].天津:天津大学,2004.
- [6]MOLINA A,KESSLER M,FUEBTES A,et al.Probabilistic characterization of thermostatically controlled loads to model the Impact of demand response programs[J].IEEE Transactions on Power Systems,2011,26(1):241-251.
- [7]ZHANG B,KEZUNOVIC M.Impact of available electric vehicle battery power capacity on power system reliability[C]//Power and Energy Society General Meeting,2013 IEEE,2013:1-5.
- [8]The Brattle Group Freeman,Sullivan&Co Global Energy Partners,LLC.A national assessment of demand response potential[R].Federal Energy Regulatory Commission,2009.
- [9]文福拴,林鸿基,胡嘉骅.需求响应的商业机制与市场框架初探[J].电力需求侧管理,2019,21(1):4-9.
- [10]马琎劼,徐正安.江苏电网“填谷”需求响应的探索与实践[J].电力需求侧管理,2018,20(6):50-52.
- [11]程瑜,翟娜娜.基于用户响应的分时电价时段划分[J].电力系统自动化,2012,36(9):42-46.
- [12]唐捷,任震,胡秀珍.一种可操作的需求侧管理峰谷分时电价定价方法[J].电网技术,2005,29(22):71-75.
- [13]阮文骏,王蓓蓓,李扬,等.峰谷分时电价下的用户响应行为研究[J].电网技术,2012,36(7):86-93.
- [14]谭忠富,王绵斌,张蓉,等.发电侧与供电侧峰谷分时电价联动的分级优化模型[J].电力系统自动化,2007,31(21):26-29.
- [15]董军,张晓虎,李春雪,等.自动需求响应背景下考虑用户满意度的分时电价最优制定策略[J].电力自动化设备,2016,36(7):67-73.
- [16]姚建刚,章建.电力市场分析[M].北京:高等教育出版社,1999.
- [17]王苏生.微观经济学理论[M].北京:中国人民大学出版社,2006.
- [18]HE Y Q,DAVID A K.Time-of-use electricity pricing based on global optimization for generation expansion planning[C]//Advances in Power System Control,Operation and Management,Apscom-97,1997(2):668-673.
- [19]COCHELL J P.24/7 hourly response to electricity real-time pricing with up to eight summers of experience[J].Journal of Regulatory Economics,2005,27(3):235-262.
- [20]徐广达,张利,梁军,等.基于设备用电特征的居民电力需求价格弹性评估[J].电力系统自动化,2020,44(13):48-60.
- [21]殷明慧.DSM环境电量定价理论与方法[M].北京:中国电力出版社,2013.
- [22]Holland,John.Adaptation in natural and artificial systems[M].Cambridge,MA:MIT Press.ISBN 978-0262581110.
- [23]李靖霞,纪陵,左建勋,等.基于遗传算法的移动储能车调度方案优化及应用[J].浙江电力,2020,39(3):50-53.
- 需求响应
- 分时电价
- 削峰填谷
- 价格弹性
- 优化模型
demand response - TOU
- peak shaving and valley filling
- price elasticity
- optimization model