浙江电力

2023, v.42;No.331(11) 11-20

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于改进SVM的新能源电站故障诊断方法
A fault diagnosis method for new energy power plants based on an improved SVM

曹瑞峰,刘子华,袁婷,罗扬帆,茹传红,秦建,邢海军
CAO Ruifeng,LIU Zihua,YUAN Ting,LUO Yangfan,RU Chuanhong,QIN Jian,XING Haijun

摘要(Abstract):

新能源电站运行数据量大、运行工况多变,发电机组的故障诊断难度较大。为此,提出了一种基于改进SVM算法的新能源电站故障诊断方法。首先,对SVM(支持向量机)的概念和原理进行了分析,并采用多元SVM分类器对SVM进行优化;然后,研究了光伏电站和风电站的故障信号提取和故障特征分析方法,并在此基础上提出了故障诊断模型;最后,从实际新能源电站获取样本数据,构建了基于决策级融合的改进SVM故障诊断模型,并将故障特征向量输入模型进行训练。结果表明,针对光伏电站的故障诊断准确率达到了97.5%,风电站的故障诊断准确率达到了98.09%,验证了该方法的准确性。
New energy power plants generate vast amounts of operational data and experience highly variable operating conditions, posing a significant challenge when it comes to diagnosing faults in generator sets. For this reason, a fault diagnosis model based on an improved SVM(support vector machine) algorithm is introduced. Firstly, the concept and principle of SVM for new energy power plants are analyzed. A multivariate SVM classifier is used to optimize the SVM. Secondly, the fault signal extraction method and fault characterization method of photovoltaic power stations and wind farms are studied. Moreover, a fault diagnosis model is proposed. Finally, sample data are obtained from new energy power plants, and an improved SVM fault diagnosis model based on decision level fusion is built. Additionally, the model is trained using fault feature vectors. The results show that the fault diagnosis accuracy for photovoltaic power plants reaches 97.5%, while the fault diagnosis accuracy for wind farms reaches 98.09%, which verify the accuracy of the method.

关键词(KeyWords): SVM;故障诊断;特征提取;光伏电站;风电机组
SVM;fault diagnosis;feature extraction;photovoltaic power station;wind turbine generator system

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211TZ220002)

作者(Author): 曹瑞峰,刘子华,袁婷,罗扬帆,茹传红,秦建,邢海军
CAO Ruifeng,LIU Zihua,YUAN Ting,LUO Yangfan,RU Chuanhong,QIN Jian,XING Haijun

DOI: 10.19585/j.zjdl.202311002

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享