储能电池实时荷电状态联合估计方法A joint real-time SOC estimation method for energy storage batteries
李先锋,胡晨刚,卜莉敏,陈攀,苗文捷,黄文哲
LI Xianfeng,HU Chengang,BU Liming,CHEN Pan,MIAO Wenjie,HUANG Wenzhe
摘要(Abstract):
准确估计储能电池的SOC(荷电状态),对于实现电池的均衡充放电,减少因电池过充过放引起的容量下降具有重要意义。针对储能电池的复杂化学状态和SOC非线性时变特性,提出一种基于VFFRLS(变遗忘因子递归最小二乘)和UKF(无迹卡尔曼滤波)算法的锂离子电池SOC联合估计方法。采用VFFRLS在线辨识电池模型的电阻、电容参数,根据辨识结果,利用UKF算法实时估计电池SOC。实验结果表明,该联合算法具有较高的准确性和稳定性。
Accurately estimating the state of charge(SOC) of energy storage batteries is of paramount importance for achieving balanced charging and discharging, and mitigating capacity degradation caused by overcharging and overdischarging. In view of the complex chemical states and nonlinear time-varying characteristics of SOC in energy storage batteries, this paper proposes a joint SOC estimation method for lithium-ion batteries based on the variable forgetting factor recursive least squares(VFFRLS) and unscented Kalman filter(UKF) algorithms. The VFFRLS algorithm is employed for online identification of battery model parameters such as resistance and capacitance, and based on the identification results, the UKF algorithm is utilized for real-time SOC estimation. Experimental results demonstrate that the proposed joint method exhibits high accuracy and stability.
关键词(KeyWords):
荷电状态估计;变遗忘因子递归最小二乘;无迹卡尔曼滤波
SOC;VFFRLS;UKF
基金项目(Foundation): 浙江大有集团有限公司科技项目(DY2022-01)
作者(Author):
李先锋,胡晨刚,卜莉敏,陈攀,苗文捷,黄文哲
LI Xianfeng,HU Chengang,BU Liming,CHEN Pan,MIAO Wenjie,HUANG Wenzhe
DOI: 10.19585/j.zjdl.202405009
参考文献(References):
- [1] YUAN D L,ZHANG C,TANG S F,et al. Ferric ionascorbic acid complex catalyzed calcium peroxide for organic wastewater treatment:Optimized by response surface method[J].Chinese Chemical Letters,2021,32(11):3387-3392.
- [2] FENG X,LI Q,WANG K. Waste plastic triboelectric nanogenerators using recycled plastic bags for power generation[J]. ACS Appl Mater Interfaces,2021,13(1):400-410.
- [3]金梦,朱鑫要,周前.新能源对电网调峰特性影响定量评估及应用[J].高压电器,2023,59(4):70-76.JIN Meng,ZHU Xinyao,ZHOU Qian.Quantitative assessment of influence of renewable energy on peak regulation characteristics of power grid and its application[J]. High Voltage Apparatus,2023,59(4):70-76.
- [4]陈刚,储建新,潘炫霖,等.基于联合集合卡尔曼滤波的锂电池SOC估计[J].浙江电力,2021,40(1):123-130.CHEN Gang,CHU Jianxin,PAN Xuanlin,et al.SOC estimation of lithium-ion battery based on joint ensemble Kalman filter[J]. Zhejiang Electric Power,2021,40(1):123-130.
- [5]谢宝江,娄伟明,罗扬帆,等.基于H∞无迹卡尔曼滤波的退役锂离子电池SOC估计[J].浙江电力,2020,39(8):53-60.XIE Baojiang,LOU Weiming,LUO Yangfan,et al.SOC estimation of decommissioned lithium-ion batteries based on H∞unscented Kalman filter[J]. Zhejiang Electric Power,2020,39(8):53-60.
- [6]续远.基于安时积分法与开路电压法估测电池SOC[J].新型工业化,2022,12(1):123-124.XU Yuan. Estimation of battery SOC based on amperehour integration method and open circuit voltage method[J]. The Journal of New Industrialization,2022,12(1):123-124.
- [7]谭必蓉,杜建华,叶祥虎,等.基于模型的锂离子电池SOC估计方法综述[J].储能科学与技术,2023,12(6):1995-2010.TAN Birong,DU Jianhua,YE Xianghu,et al.Overview of SOC estimation methods for lithium-ion batteries based on model[J].Energy Storage Science and Technology,2023,12(6):1995-2010.
- [8]张传伟,李林阳,赵东刚.基于BP神经网络法估算动力电池SOC[J].电源技术,2017,41(9):1356-1357.ZHANG Chuanwei,LI Linyang,ZHAO Donggang.Estimation and simulation of power battery SOC based on BP neural network[J]. Chinese Journal of Power Sources,2017,41(9):1356-1357.
- [9] LIU F M,LIU T,FU Y Z.An improved SOC estimation algorithm based on artificial neural network[C]//2015 8th International Symposium on Computational Intelligence and Design(ISCID). December 12-13,2015. Hangzhou,China:IEEE,2015:152-155.
- [10]叶圣双.电动汽车锂电池组均衡控制研究[D].温州:温州大学,2017.YE Shengshuang. Research on equalization control of lithium battery in electric vehicle[D].Wenzhou:Wenzhou University,2017.
- [11] MA Y,DUAN P,SUN Y S,et al.Equalization of lithiumion battery pack based on fuzzy logic control in electric vehicle[J]. IEEE Transactions on Industrial Electronics,2018,65(8):6762-6771.
- [12]胡丽平.基于支持向量机的动力锂离子电池SOC估算算法研究[D].武汉:湖北工业大学,2014.HU Liping.Study on SOC estimation of power lithium-ion battery based on support vector machine[D].Wuhan:Hubei University of Technology,2014.
- [13] SHENG H M,XIAO J.Electric vehicle state of charge estimation:Nonlinear correlation and fuzzy support vector machine[J]. Journal of Power Sources,2015,281:131-137.
- [14] CAO W P,MING Z,WANG X Z,et al.Improved bidirectional extreme learning machine based on enhanced random search[J].Memetic Computing,2019,11(1):19-26.
- [15] CHEN L,WANG Z Z,LU Z Q,et al.A novel state-ofcharge estimation method of lithium-ion batteries combining the grey model and genetic algorithms[J].IEEE Transactions on Power Electronics,2018,33(10):8797-8807.
- [16] LU J H,CHEN Z Y,YANG Y,et al.Online estimation of state of power for lithium-ion batteries in electric vehicles using genetic algorithm[J].IEEE Access,2018,6:20868-20880.
- [17] HE H W,QIN H Z,SUN X K,et al.Comparison study on the battery SoC estimation with EKF and UKF algorithms[J].Energies,2013,6(10):5088-5100.
- [18] ZAHID T,LI W M. A comparative study based on the least square parameter identification method for state of charge estimation of a LiFePO4 battery pack using three model-based algorithms for electric vehicles[J].Energies,2016,9(9):720.
- [19] LIN C,ZHANG X.Modeling and simulation research on lithium-ion battery in electric vehicles based on genetic algorithm[J].Applied Mechanics and Materials,2014,494/495:246-249.
- [20] HE H W,ZHANG X W,XIONG R,et al.Online modelbased estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles[J].Energy,2012,39(1):310-318.
- [21] HE H W,XIONG R,GUO H Q. Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles[J].Applied Energy,2012,89(1):413-420.
- [22] TONG S J,KLEIN M P,PARK J W.On-line optimization of battery open circuit voltage for improved state-ofcharge and state-of-health estimation[J].Journal of Power Sources,2015,293:416-428.
- [23] ZHANG T L,YANG S Y,HU J Y,et al.State of charge estimation of lithium battery based on FFRLS-SRUKF algorithm[C]//2020 IEEE 3rd International Conference on Electronics Technology(ICET). May 8-12, 2020.Chengdu,China:IEEE,2020:433-43.