基于联合集合卡尔曼滤波的锂电池SOC估计SOC Estimation of Lithium-ion Battery Based on Joint Ensemble Kalman Filter
陈刚,储建新,潘炫霖,雷健新,郑迪
CHEN Gang,CHU Jianxin,PAN Xuanling,LEI Jianxin,ZHENG Di
摘要(Abstract):
锂电池的SOC(荷电状态)准确估计是电池管理系统及其控制的基础。现有扩展卡尔曼滤波、无迹卡尔曼滤波等方法需计算高维雅克比矩阵或协方差矩阵,对计算能力要求较高。结合数据同化和集合预报的思想,提出基于联合EnKF(集合卡尔曼滤波)的锂电池SOC估计方法。该方法利用集合的统计特征来表征状态变量,避免了高维矩阵的运算,对SOC和模型参数进行联合估计,可提高算法速度和精度。建立了锂电池等效电路模型并辨识了模型初始参数,得到了开路电压曲线。在EnKF的基础上,针对充放电过程中模型参数的变化,提出了基于联合EnKF的SOC估计方法,可在计算过程中联合估计SOC和模型参数。实验结果表明,所提方法可准确高效地估计锂电池的SOC。
Accurate estimation of SOC(state of charge) of lithium-ion batteries is the basis of the battery management system and its control. The existing methods such as the extended Kalman filter and unscented Kalman filter need to calculate a high-dimensional Jacobian matrix or a covariance matrix, which require a higher calculation capability. Given the ideas of data assimilation and ensemble forecasting, a lithium-ion battery SOC estimation method based on EnKF(ensemble Kalman filter) is proposed. This method represents state variables by statistical characteristics of the ensemble and avoids the operation of high-dimensional matrices; it estimates SOC and model parameters to improve operation speed and accuracy. An equivalent circuit model of the lithium-ion battery is established and the initial parameters of the model are identified to obtain an open circuit voltage curve. Based on EnKF and model parameter change during charging and discharging processes, a SOC estimation method based on the joint EnKF method is proposed, which can estimate SOC and model parameters at the same time. The experimental results prove that the proposed method can accurately and efficiently estimate the SOC of lithium-ion batteries.
关键词(KeyWords):
锂电池;SOC;状态估计;集合卡尔曼滤波
lithium-ion battery;SOC;state estimation;EnKF
基金项目(Foundation): 浙江省自然科学基金项目(LQ20E090006)
作者(Author):
陈刚,储建新,潘炫霖,雷健新,郑迪
CHEN Gang,CHU Jianxin,PAN Xuanling,LEI Jianxin,ZHENG Di
DOI: 10.19585/j.zjdl.202101018
参考文献(References):
- [1]李靖霞,纪陵,左建勋,等.基于遗传算法的移动储能车调度方案优化及应用[J].浙江电力,2020,39(3):50-53.
- [2]杨文荣,朱赛飞,陈阳,等.基于改进安时积分法估计锂离子电池组SOC[J].电源技术,2018,42(2):183-184.
- [3]XING Y,HE W,PECHT M,et al.State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures[J].Applied Energy,2014,113(6):106-115.
- [4]YANG F,LI W,LI C,et al.State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network[J].Energy,2019,175(4):66-75.
- [5]GUO Y,ZHAO Z,HUANG L.SoC estimation of Lithium battery based on improved BP neural network[J].Energy Procedia,2017,105(2):4153-4158.
- [6]CHEMALI E,KOLLMEYER P J,PREINDL M,et al.State-of-charge estimation of Li-ion batteries using deep neural networks:A machine learning approach[J].Journal of Power Sources,2018,400(1):242-255.
- [7]商云龙,张承慧,崔纳新,等.基于模糊神经网络优化扩展卡尔曼滤波的锂离子电池荷电状态估计[J].控制理论与应用,2016,33(2):212-220.
- [8]SUNAHARA Y,YAMASHITA K.An approximate method of state estimation for non-linear dynamical systems with state-dependent noise[J].International Journal of Control,1970,11(6):957-972.
- [9]HIDALGO-REYES J I,GOMEZ-AGUILAR J F,AL-VARADO-MARTINEZ V M,et al.Battery state-of-charge estimation using fractional extended Kalman filter with Mittag-Leffler memory[J].Alexandria Engineering Journal,2020,59(4):1919-1929.
- [10]KWAK M,LKHAGVASUREN B,PARK J,et al.Parameter identification and SOC estimation of a battery under the hysteresis effect[J].IEEE Transactions on Industrial Electronics,2020,67(11):9758-9767.
- [11]LIN Y,XU X,WANG F,et al.Active equalization control strategy of Li-ion battery based on state of charge estimation of an electrochemical-thermal coupling model[J].International Journal of Energy Research,2020,44 (5):3778-3789.
- [12]SUN D,YU X,WANG C,et al.State of charge estimation for lithium-Ion battery based on an intelligent adaptive extended kalman filter with improved noise estimator[J].Energy,2020(5):1190-1195.
- [13]刘艳莉,戴胜,程泽,等.基于有限差分扩展卡尔曼滤波的锂离子电池SOC估计[J].电工技术学报,2014,29(1):221-228.
- [14]谈发明,李秋烨,赵俊杰,等.基于强跟踪DEKF算法的动力电池SOC估计模型[J].电力电子技术,2019,53(11):61-65.
- [15]WANG T,CHEN S,REN H,et al.Model-based unscented Kalman filter observer design for lithium-ion battery state of charge estimation[J].International Journal of Energy Research,2018,42(4):1603-1614.
- [16]费亚龙,谢长君,汤泽波,等.基于平方根无迹卡尔曼滤波的锂电池状态估计[J].中国电机工程学报,2017,37(15):4514-4520.
- [17]LIU G,XU C,JIANG KMet al.State of charge and model parameters estimation of liquid metal batteries based on adaptive unscented Kalman filter[J].Energy Procedia,2019,158(3):4477-4482.
- [18]ZENG M,ZHANG P,YANG Y,et al.SOC and SOH Joint Estimation of the Power Batteries Based on Fuzzy Unscented Kalman Filtering Algorithm[J].Energies,2019,12(16):3122-3127.
- [19]EVENSEN G.Sequential data assimilation with a nonlin ear quasi-geostrophic model using monte carlo methods to forecast error statistics[J].Journal of Geophysical Research:Oceans,1994,99(5):10143-10162.
- [20]SCHILLINGS C,STUART A M.Analysis of the ensemble Kalman filter for inverse problems[J].SIAM Journal on Numerical Analysis,2017,55(3):1264-1290.
- [21]ZHANG X,ZHANG W,LEI G.A review of li-ion battery equivalent circuit models[J].Trans.Electr.Electron.Mater.(TEEM),2016,17(6):311-316.
- [22]徐佳宁,裴磊,徐冰亮,等.基于仿真对比的电池等效电路模型分析[J].电测与仪表,2017,54(2):1-6.