基于IHHO-SVM的电能质量扰动信号识别方法Identification method for disturbance signal of power quality based on improve Harris Hawks optimization-support vector machine
陈晓华,王志平,吴杰康,蔡锦健,张勋祥,阚东旺,陈敦进
CHEN Xiaohua,WANG Zhiping,WU Jiekang,CAI Jinjian,ZHANG Xunxiang,KAN Dongwang,CHEN Dunjin
摘要(Abstract):
针对SVM(支持向量机)的惩罚因子和核函数参数在寻优过程中容易陷入局部最优以及哈里斯鹰优化算法容易陷入局部最优的问题,提出一种利用IHHO(改进哈里斯鹰优化)算法对SVM的惩罚因子和核函数参数进行寻优,构建IHHO-SVM分类器来对电能质量扰动信号进行识别的方法。通过对9种不同的电能质量扰动信号加入0 dB、20 dB和30 dB的高斯白噪声来进行测试,利用改进的自适应噪声完备集合经验模式分解算法分解信号并提取信号前3阶固有模态函数分量的能量熵和样本熵作为一组特征向量,将特征向量进行归一化处理后输入9种分类器进行对比。仿真结果表明,在信号加入0 dB、20 dB和30 dB高斯白噪声的情况下,IHHO-SVM分类器的识别准确率分别为99.11%、97.78%和97.33%,其分类效果是所有分类器中最优的,证明了其分类的准确性、优越性和抗噪性。
Aiming at the problems that the penalty factor and kernel function parameters of SVM(support vector machine) are easy to fall into the local optimal solution in the optimization process and the Harris Hawks optimization algorithm is easy to fall into the local optimal solution, a method of using IHHO(improved Harris Hawks optimization) algorithm to optimize the penalty factor and kernel function parameters of SVM and constructing IHHO-SVM classifier to identify disturbance signals of power quality is proposed. By adding 0 dB,20 dB and 30 dB Gaussian white noises to nine different disturbance signals of power quality, the improved empirical mode decomposition algorithm of adaptive noise complete set is used to decompose the signal, and the energy entropy and sample entropy of the first three intrinsic mode function components of the signal are extracted as a set of feature vectors. The feature vectors are normalized and input into nine classifiers for comparison. The simulation results show that the recognition accuracy of IHHO-SVM classifier is 99.11%, 97.78% and 97.33%, respectively, when the signal is added with 0 dB,20 dB and 30 dB Gaussian white noises. The classification effect of IHHO-SVM classifier is the best among all classifiers, which proves the accuracy, superiority and noise immunity of its classification.
关键词(KeyWords):
电能质量;扰动信号;支持向量机;哈里斯鹰优化算法;扰动识别
power quality;disturbance signal;support vector machine;Harris Hawks optimization algorithm;disturbance identification
基金项目(Foundation): 广东省基础与应用基础研究基金项目(2019B1515120076);广东省基础与应用基础研究基金区域联合基金项目“粤港澳研究团队项目”(2020B1515130001)
作者(Author):
陈晓华,王志平,吴杰康,蔡锦健,张勋祥,阚东旺,陈敦进
CHEN Xiaohua,WANG Zhiping,WU Jiekang,CAI Jinjian,ZHANG Xunxiang,KAN Dongwang,CHEN Dunjin
DOI: 10.19585/j.zjdl.202308015
参考文献(References):
- [1]陈晓华,吴杰康,陈盛语,等.基于小波变换和行波测距的单相短路电压暂降源定位方法[J].黑龙江电力,2022,44(1):47-53.CHEN Xiaohua,WU Jiekang,CHEN Shengyu,et al.Location method of single-phase short-circuit voltage sag source based on wavelet transform and traveling wave ranging[J]. Heilongjiang Electric Power,2022,44(1):47-53.
- [2]陈晓华,吴杰康,陈盛语,等.基于EMD和IABC-SVM算法的复合电压暂降源辨识方法[J].广东电力,2022,35(2):11-18.CHEN Xiaohua,WU Jiekang,CHEN Shengyu,et al.Compound voltage sag source identification method based on EMD and IABC-SVM algorithm[J].Guangdong Electric Power,2022,35(2):11-18.
- [3]周宇鑫,石晶,陈红坤,等.计及用户类型的电能质量区间评估方法[J].电力电容器与无功补偿,2022,43(4):60-68.ZHOU Yuxin,SHI Jing,CHEN Hongkun,et al.Interval assessment method for power quality considering user types[J].Power Capacitor&Reactive Power Compensation,2022,43(4):60-68.
- [4]张树楠,罗海云,程晓绚,等.基于双dq变换正负序提取及锁相环的FPGA实现[J].高压电器,2020,56(3):182-189.ZHANG Shunan,LUO Haiyun,CHENG Xiaoxuan,et al.Realization of positive&negative sequence component picking up and phase locked loop using FPGA based on dual-dq transform[J]. High Voltage Apparatus,2020,56(3):182-189.
- [5]袁性忠,王辉,贾宏刚,等.基于储能型APF的微电网电能质量综合治理[J].高压电器,2022,58(8):238-244.YUAN Xingzhong,WANG Hui,JIA Honggang,et al.Comprehensive power quality control for microgrid based on APF with energy storage[J].High Voltage Apparatus,2022,58(8):238-244.
- [6]谢善益,肖斐,艾芊,等.基于并行隐马尔科夫模型的电能质量扰动事件分类[J].电力系统保护与控制,2019,47(2):80-86.XIE Shanyi,XIAO Fei,AI Qian,et al.Parallel hidden markov model based classification of power quality disturbance events[J]. Power System Protection and Control,2019,47(2):80-86.
- [7]杨剑锋,姜爽,石戈戈.基于分段改进S变换的复合电能质量扰动识别[J].电力系统保护与控制,2019,47(9):64-71.YANG Jianfeng,JIANG Shuang,SHI Gege.Classification of composite power quality disturbances based on piecewise-modified S transform[J].Power System Protection and Control,2019,47(9):64-71.
- [8]赵洛印,庄磊,丁建顺,等.基于S&TT变换与PSOSVMs的电能质量混合扰动识别[J].电测与仪表,2020,57(4):78-86.ZHAO Luoyin,ZHUANG Lei,DING Jianshun,et al.Identification of power quality hybrid disturbances based on S&TT transform and PSO-SVMs[J].Electrical Measurement&Instrumentation,2020,57(4):78-86.
- [9]徐佳雄,张明,王阳,等.基于改进Hilbert-Huang变换的电能质量扰动定位与分类[J].现代电力,2021,38(4):362-369.XU Jiaxiong,ZHANG Ming,WANG Yang,et al. Location and classification of power quality disturbances based on improved Hilbert-Huang transform[J].Modern Electric Power,2021,38(4):362-369.
- [10]牛健,张志飞,汤铭辉,等.基于改进局部均值分解和概率神经网络的电压扰动识别[J/OL].电源学报[2021-08-26].https://kns.cnki.net/kcms/detail/12.1420.TM.20210826.1139.002.html.NIU Jian,ZHANG Zhifei,TANG Minghui,et al.Voltage disturbance recognition based on improved local mean decomposition and probabilistic neural network[J/OL].Journal of Power Supply[2021-08-26].https://kns.cnki.net/kcms/detail/12.1420.TM.20210826.1139.002.html.
- [11]陈伟,张韵,裴喜平,等.基于案例推理和SVM-KNN的电能质量扰动分类方法[J].兰州理工大学学报,2017,43(4):87-92.CHEN Wei,ZHANG Yun,PEI Xiping,et al. Classification method of power quality disturbances based on casebased reasoning and SVM-KNN[J]. Journal of Lanzhou University of Technology,2017,43(4):87-92.
- [12]吴志宇,朱云芳,侯怡爽,等.电能质量扰动识别的小波压缩感知方法[J].电力系统及其自动化学报,2019,31(5):1-7.WU Zhiyu,ZHU Yunfang,HOU Yishuang,et al. Power quality disturbance recognition method based on wavelet compressive sensing[J].Proceedings of the CSU-EPSA,2019,31(5):1-7.
- [13]陈伟,何家欢,裴喜平.基于相空间重构和卷积神经网络的电能质量扰动分类[J].电力系统保护与控制,2018,46(14):87-93.CHEN Wei,HE Jiahuan,PEI Xiping. Classification for power quality disturbance based on phase-space reconstruction and convolution neural network[J]. Power System Protection and Control,2018,46(14):87-93.
- [14]屈相帅,段斌,尹桥宣,等.基于稀疏自动编码器深度神经网络的电能质量扰动分类方法[J].电力自动化设备,2019,39(5):157-162.QU Xiangshuai,DUAN Bin,YIN Qiaoxuan,et al.Classification method of power quality disturbances based on deep neural network of sparse auto-encoder[J].Electric Power Automation Equipment,2019,39(5):157-162.
- [15] DAVID C M,MARTIN V R,CALOS A P R,et al.Novel down sampling empirical mode decomposition approach for power quality analysis[J]. IEEE Transactions on Industrial Electronics,2016,63(4):2369-2378.
- [16] TORRES M E, COLOMINAS M A,SCHLOTTHAUER G,et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//2011IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP),May 22-27,2011,Prague,Czech Republic:4144-4147.
- [17]曹梦舟,张艳.基于卷积-长短期记忆网络的电能质量扰动分类[J].电力系统保护与控制,2020,48(2):86-92.CAO Mengzhou,ZHANG Yan. Classification for power quality disturbances based on CNN-LSTM network[J].Power System Protection and Control,2020,48(2):86-92.
- [18]王维博,张斌,曾文入,等.基于特征融合一维卷积神经网络的电能质量扰动分类[J].电力系统保护与控制,2020,48(6):53-60.WANG Weibo,ZHANG Bin,ZENG Wenru,et al.Power quality disturbance classification of one-dimensional convolutional neural networks based on feature fusion[J].Power System Protection and Control,2020,48(6):53-60.
- [19]武昭旭,杨岸,祝龙记.基于循环神经网络的电能质量扰动识别[J].电力系统保护与控制,2020,48(18):88-94.WU Zhaoxu,YANG An,ZHU Longji.Power quality disturbance recognition based on a recurrent neural network[J].Power System Protection and Control,2020,48(18):88-94.
- [20]许立武,李开成,肖贤贵,等.基于深度前馈网络的电能质量复合扰动识别[J].电测与仪表,2020,57(1):62-69.XU Liwu,LI Kaicheng,XIAO Xiangui,et al.Recognition of power quality complex disturbances based on deep feedforward network[J].Electrical Measurement&Instrumentation,2020,57(1):62-69.
- [21]王伟,李开成,许立武,等.基于一维卷积神经网络多任务学习的电能质量扰动识别方法[J].电测与仪表,2022,59(3):18-25.WANG Wei,LI Kaicheng,XU Liwu,et al.Power quality disturbance recognition method based on multi-task learning and one-dimensional convolutional neural network[J].Electrical Measurement&Instrumentation,2022,59(3):18-25.
- [22]瞿合祚,刘恒,李晓明,等.基于多标签随机森林的电能质量复合扰动分类方法[J].电力系统保护与控制,2017,45(11):1-7.QU Hezuo,LIU Heng,LI Xiaoming,et al.Recognition of multiple power quality disturbances using multi-label random forest[J]. Power System Protection and Control,2017,45(11):1-7.
- [23]程志友,杨猛.基于二维离散余弦S变换的电能质量扰动类型识别[J].电力系统保护与控制,2021,49(17):85-92.CHENG Zhiyou,YANG Meng.Power quality disturbance type identification based on a two-dimensional discrete cosine S-transform[J]. Power System Protection and Control,2021,49(17):85-92.
- [24]沈跃,刘国海,刘慧.基于改进S变换和贝叶斯相关向量机的电能质量扰动识别[J].控制与决策,2011,26(4):587-591.SHEN Yue,LIU Guohai,LIU Hui.Classification identification of power quality disturbances based on modified Stransform and Bayes relevance vector machine[J].Control and Decision,2011,26(4):587-591.
- [25]刘晓胜,刘博,徐殿国.基于类别语言值的电能质量信号模糊分类[J].电工技术学报,2015,30(12):392-399.LIU Xiaosheng,LIU Bo,XU Dianguo.Fuzzy classification of power quality signals based on pattern linguistic values[J].Transactions of China Electrotechnical Society,2015,30(12):392-399.
- [26]江辉,郑岳怀,王志忠,等.基于数字图像处理技术的暂态电能质量扰动分类[J].电力系统保护与控制,2015,43(13):72-78.JIANG Hui,ZHENG Yuehuai,WANG Zhizhong,et al.An image processing based method for transient power quality classification[J]. Power System Protection and Control,2015,43(13):72-78.
- [27]瞿合祚,李晓明,陈陈,等.基于卷积神经网络的电能质量扰动分类[J].武汉大学学报(工学版),2018,51(6):534-539.QU Hezuo,LI Xiaoming,CHEN Chen,et al. Classification of power quality disturbances using convolutional neural network[J].Engineering Journal of Wuhan University,2018,51(6):534-539.
- [28]管一臣,童攀,冯志鹏.基于ICEEMDAN方法和频率解调的行星齿轮箱故障电流信号特征分析[J].振动与冲击,2019,38(24):41-47.GUAN Yichen,TONG Pan,FENG Zhipeng. Planetary gearbox fault diagnosis via current signature analysis based on ICEEMDAN and frequency demodulation[J]. Journal of Vibration and Shock,2019,38(24):41-47.
- [29]陈晓华,王志平,吴杰康,等.基于VMD和IAO-SVM的电压暂降源识别方法[J].广东电力,2023,36(1):59-67.CHEN Xiaohua,WANG Zhiping,WU Jiekang,et al.Identification method of voltage sag source based on VMD and IAO-SVM[J].Guangdong Electric Power,2023,36(1):59-67.
- [30]陈晓华,吴杰康,王志平,等.基于改进GSA-SVM算法的电能质量扰动分类方法[J].宁夏电力,2023(2):12-21.CHEN Xiaohua,WU Jiekang,WANG Zhiping,et al.The classification method for power quality disturbance based on improved GSA-SVM algorithm[J]. Ningxia Electric Power,2023(2):12-21.
- [31] HEIDARI A A,MIRJALILI S,FARIS H,et al. Harris Hawks optimization:algorithm and applications[J].Future Generation Computer Systems,2019,97:849-872.
- [32] MOUSTAFA M,MOHD M H,ISMAIL A I,et al.Dynamical analysis of a fractional-order RosenzweigMacArthur model incorporating a prey refuge[J].Chaos,Solitons&Fractals,2018,109:1-13.
- [33]何小龙,张刚,陈跃华,等.融合Lévy飞行和精英反向学习的WOA-SVM多分类算法[J].计算机应用研究,2021,38(12):3640-3645.HE Xiaolong,ZHANG Gang,CHEN Yuehua,et al.WOA-SVM multi-classification algorithm combining Lévy flight and elite reverse learning[J].Application Research of Computers,2021,38(12):3640-3645.
- 电能质量
- 扰动信号
- 支持向量机
- 哈里斯鹰优化算法
- 扰动识别
power quality - disturbance signal
- support vector machine
- Harris Hawks optimization algorithm
- disturbance identification
- 陈晓华
- 王志平
- 吴杰康
- 蔡锦健
- 张勋祥
- 阚东旺
- 陈敦进
CHEN Xiaohua - WANG Zhiping
- WU Jiekang
- CAI Jinjian
- ZHANG Xunxiang
- KAN Dongwang
- CHEN Dunjin
- 陈晓华
- 王志平
- 吴杰康
- 蔡锦健
- 张勋祥
- 阚东旺
- 陈敦进
CHEN Xiaohua - WANG Zhiping
- WU Jiekang
- CAI Jinjian
- ZHANG Xunxiang
- KAN Dongwang
- CHEN Dunjin