浙江电力

2021, v.40;No.301(05) 45-52

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于空间相似度和深度学习的中长期用电量预测
Medium and Long-term Electricity Consumption Prediction Based on Spatial Similarity and Deep Learning

章剑光,刘理峰,林海峰,张永建
ZHANG Jianguang,LIU Lifeng,LIN Haifeng,ZHANG Yongjian

摘要(Abstract):

准确地预测用户中长期用电量对电力系统优化与调度具有重要意义。为此,提出一种根据用电曲线空间相似性划分用电用户类别,进而利用深度网络预测单类用户中长期用电量的方法,用以提升预测精度。首先,计算用电数据间的动态时间规整距离,基于规整距离利用层次聚类法绘制层次聚类树对用户分类。然后,通过离差标准化约束分类后每类用户数据的取值范围,进而通过深度神经网络建立单类用户的中长期用电量预测模型。最后,通过实例分析了传统方法与所提方法的用户聚类效果,并对比单类用户的总体、个体用电量预测结果,证明了所提依据空间形状相似度指标可较准确地划分用户类别,提升了中长期用电量的预测精度。
Accurate prediction of medium and long-term electricity consumption is of significance to power system optimization and dispatch. This paper proposes a method to classify the electricity users according to the spatial similarity of the electricity consumption curve, and then to predict the medium and long-term electricity consumption of single users by using the deep network to improve the prediction accuracy. Firstly,the dynamic time structuring distance between electricity consumption data is calculated. Based on the structured distance, a hierarchical clustering tree is drawn to classify users. Then, the value range of each class of user data is classified by the deviation standardized constraint, and the medium and long-term electricity consumption prediction model of single users is established through the deep neural network. Finally, the clustering effect of the traditional method and the proposed method is analyzed via an example. The overall and individual electricity consumption prediction results of single-category users are compared. It is proved that the proposed spatial shape similarity index can accurately classify the user categories and improve the prediction accuracy of medium and long-term electricity consumption.

关键词(KeyWords): 用户聚类;动态时间规整;深度网络;用电量预测
users clustering;dynamic time structuring;deep network;power consumption prediction

Abstract:

Keywords:

基金项目(Foundation): 国家电网有限公司科技项目(5211SX1800AX)

作者(Author): 章剑光,刘理峰,林海峰,张永建
ZHANG Jianguang,LIU Lifeng,LIN Haifeng,ZHANG Yongjian

DOI: 10.19585/j.zjdl.202105007

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享