考虑功率-误差相关性的风电功率概率预测模型A probabilistic wind power forecasting model considering power error correlation
陈文进,王小仲,张思,甘雯,沈诚亮,顾伟康,邱剑
CHEN Wenjin,WANG Xiaozhong,ZHANG Si,GAN Wen,SHEN Chengliang,GU Weikang,QIU Jian
摘要(Abstract):
以风电为代表的新能源具有波动性和间歇性等特性,因此风电功率不确定性强且功率预测存在一定的预测误差。为准确把握功率预测误差分布的差异化,基于Copula函数提出了一种考虑功率-误差相关性的风电功率概率预测模型。首先,构建基于提示学习的风电功率点预测模型,预判风电功率的变化趋势。然后,为准确分析预测误差分布情况,采用Copula函数分析风电功率预测与预测误差之间的相关性,针对各个功率预测值建立对应的预测误差概率密度函数,得到一定置信度下风电功率预测值可能发生波动的区间范围。最后,验证所提风电功率概率预测模型的有效性。
New energy sources, such as wind power, are characterized by volatility and intermittency, leading to significant uncertainty in wind power output and errors in power forecasting. To accurately capture the differentiated distribution of power forecasting errors, a copula-based probabilistic wind power forecasting model considering power error correlation is proposed. First, a wind power point forecasting model is developed using prompt learning to predict the trends in wind power. Subsequently, a copula is employed to analyze the correlation between wind power forecasting and forecasting errors, enabling the establishment of probability density functions for forecasting errors corresponding to each forecasting value. This method determines the range of potential fluctuations in wind power forecasting within a given confidence level. Finally, the proposed probabilistic wind power forecasting model is validated, demonstrating its effectiveness.
关键词(KeyWords):
风电功率;提示学习;相关性;Copula函数;功率概率预测
wind power;prompt learning;correlation;copula;probabilistic power forecasting
基金项目(Foundation): 国家自然科学基金联合基金(U22B2098);; 国网浙江省电力有限公司科技项目(B311UZ23000B)
作者(Author):
陈文进,王小仲,张思,甘雯,沈诚亮,顾伟康,邱剑
CHEN Wenjin,WANG Xiaozhong,ZHANG Si,GAN Wen,SHEN Chengliang,GU Weikang,QIU Jian
DOI: 10.19585/j.zjdl.202507006
参考文献(References):
- [1]冯云辰,加鹤萍,闫敏,等.基于风电分时电价的虚拟电厂参与清洁供暖运营优化方法[J].中国电力,2024,57(1):51-60.FENG Yunchen,JIA Heping,YAN Min,et al.Operation optimization method for virtual power plant participating in clean heating based on time-of-use tariff of wind power[J].Electric Power,2024,57(1):51-60.
- [2]李佳瑶,刘伟娜.考虑碳交易和风荷预测误差的电力系统低碳经济调度[J].浙江电力,2021,40(5):1-6.LI Jiayao,LIU Weina. Low-carbon economic dispatch of power system considering carbon trading and wind power and load forecast errors[J].Zhejiang Electric Power,2021,40(5):1-6.
- [3]杨国华,祁鑫,贾睿,等.基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测[J].中国电力,2024,57(2):55-61.YANG Guohua,QI Xin,JIA Rui,et al.Short-term wind power forecast based on CNN&LSTM-GRU model integrated with CEEMD-SE algorithm[J]. Electric Power,2024,57(2):55-61.
- [4]李炳胜,庞传军,程大闯.基于NGBoost的可解释风电功率概率预测[J].浙江电力,2023,42(3):28-36.LI Bingsheng,PANG Chuanjun,CHENG Dachuang. Interpretable wind power probabilistic prediction based on NGBoost[J].Zhejiang Electric Power,2023,42(3):28-36.
- [5]LIU X,JI K X,FU Y C,et al.P-tuning v2:prompt tuning can be comparable to fine-tuning universally across scales and tasks[EB/OL].2021:2110.07602.https://arxiv.org/abs/2110.07602v3.
- [6]SANJARI M J,GOOI H B,NAIR N K C.Power generation forecast of hybrid PV-wind system[J].IEEE Transactions on Sustainable Energy,2020,11(2):703-712.
- [7]刘吉成,朱玺瑞,于晶.基于IWOA-SA-Elman神经网络的短期风电功率预测[J].太阳能学报,2024,45(1):143-150.LIU Jicheng,ZHU Xirui,YU Jing.Short-term wind power prediction based on iwoa-sa-Elman neural network[J].Acta Energiae Solaris Sinica,2024,45(1):143-150.
- [8]王小明,徐斌,尹元亚,等.基于空间相关性与Stacking集成学习的风电功率预测方法[J].电力工程技术,2024,43(5):224-232.WANG Xiaoming,XU Bin,YIN Yuanya,et al. Wind power prediction method based on spatial correlation and Stacking ensemble learning[J]. Electric Power Engineering Technology,2024,43(5):224-232.
- [9]陈晓华,吴杰康,龙泳丞,等.基于核主成分分析和食肉植物算法优化随机森林的风电功率短期预测[J].山东电力技术,2024,51(1):59-67.CHEN Xiaohua,WU Jiekang,LONG Yongcheng,et al.Short-term wind power prediction based on random forest optimized by kernel principal component analysis and carnivorous plant algorithm[J]. Shandong Electric Power,2024,51(1):59-67.
- [10]杨可文,孙英云.基于时序注意力机制的超短期风电功率概率预测[J].现代电力,2023,40(6):906-913.YANG Kewen,SUN Yingyun. Probability prediction of ultra-short-term wind power based on temporal pattern attention[J].Modern Electric Power,2023,40(6):906-913.
- [11]BLUDSZUWEIT H,DOMINGUEZ-NAVARRO J A,LLOMBART A. Statistical analysis of wind power forecast error[J]. IEEE Transactions on Power Systems,2008,23(3):983-991.
- [12]徐询,谢丽蓉,梁武星,等.考虑风电预测误差时序性及风电可信度的双层优化模型[J].电工技术学报,2023,38(6):1620-1632.XU Xun,XIE Lirong,LIANG Wuxing,et al.Bi-level optimization model considering time series characteristic of wind power forecast error and wind power reliability[J].Transactions of China Electrotechnical Society,2023,38(6):1620-1632.
- [13]王彩霞,鲁宗相,乔颖,等.基于非参数回归模型的短期风电功率预测[J].电力系统自动化,2010,34(16):78-82.WANG Caixia,LU Zongxiang,QIAO Ying,et al.Shortterm wind power forecast based on non-parametric regression model[J]. Automation of Electric Power Systems,2010,34(16):78-82.
- [14]蒋婷婷.基于不确定性理论的区域光伏发电功率预测[D].北京:华北电力大学,2023.JIANG Tingting.Regional photovoltaic power forecasting based on Uncertainty Theory[D]. Beijing:North China Electric Power University,2023.
- [15]刘旺,邢晓帆,王戎.全球陆地风能发电潜力的历史变化及未来预测[J].北京大学学报(自然科学版),2023,59(5):833-842.LIU Wang,XING Xiaofan,WANG Rong.Historical trend and future projections of global on-shore wind power generation potential[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2023,59(5):833-842.
- [16]刘怀柏,王斌,张记文,等.基于Pearson系数法与风电机组塔筒应力监测点的选取与研究[J].电力设备管理,2023(5):120-122.
- [17]纪德洋,金锋,冬雷,等.基于皮尔逊相关系数的光伏电站数据修复[J].中国电机工程学报,2022,42(4):1514-1522.JI Deyang,JIN Feng,DONG Lei,et al.Data repairing of photovoltaic power plant based on Pearson correlation coefficient[J].Proceedings of the CSEE,2022,42(4):1514-1522.
- [18]李阳,田松丰,贾嵘,等.基于熵权灰关联分析的高压直流输电换流阀空冷器状态评估[J].电网与清洁能源,2021,37(3):47-53.LI Yang,TIAN Songfeng,JIA Rong,et al.Condition assessment of the HVDC converter valve air cooler based onEntropy weight gray correlation analysis[J].Power System and Clean Energy,2021,37(3):47-53.
- [19]SUN R,TAN W J,LIU J K,et al.Research on equivalent modeling method of wind farm considering wind speed correlation based on Mixed-Copula[C]//2021 IEEE Sustainable Power and Energy Conference(iSPEC),Nanjing,China,2021:602-607.
- [20]苏晨博,刘崇茹,徐诗甜,等.利用贝叶斯线性回归结合混合Copula函数分析风电功率的相关性[J].中国电力,2021,54(8):182-189.SU Chenbo,LIU Chongru,XU Shitian,et al.Mix copula function based wind power correlation analysis:a Bayesian linear regression approach[J]. Electric Power,2021,54(8):182-189.
- [21]安波,赵维纳,龙从军.基于提示学习的低资源藏文文本分类[J].中文信息学报,2024,38(2):70-78.AN Bo,ZHAO Weina,LONG Congjun.Low-resource Tibetan text classification based on prompt learning[J].Journal of Chinese Information Processing,2024,38(2):70-78.
- [22]万灿,崔文康,宋永华.新能源电力系统概率预测:基本概念与数学原理[J].中国电机工程学报,2021,41(19):6493-6508.WAN Can,CUI Wenkang,SONG Yonghua.Probabilistic forecasting for power systems with renewable energy sources:basic concepts and mathematical principles[J].Proceedings of the CSEE,2021,41(19):6493-6508.