单机无穷大系统中卷积法计算轨迹灵敏度的有效性验证Validity verification of trajectory sensitivity calculation by convolution method in single-machine infinite bus system
冯治,安军,韩磊,沈清野
FENG Zhi,AN Jun,HAN Lei,SHEN Qingye
摘要(Abstract):
为利用广域测量系统计算轨迹灵敏度,提高电力系统动态安全分析的水平,基于单机无穷大系统分析了卷积法计算轨迹灵敏度的有效性。理论分析表明,改变发电机模型不会改变轨迹灵敏度与轨迹之间的关系。在理论分析的基础上进行动态仿真,仿真结果表明,不同模型可以仿真出几乎一致的动态轨迹。以上研究表明,卷积法计算轨迹灵敏度不受系统模型的影响。建立评价卷积法计算轨迹灵敏度精度结果的指标,通过改变发电机模型、扰动量、初始运行状态遍历动态仿真轨迹,结果表明单机无穷大系统中卷积法计算轨迹灵敏度具有高可靠性,实际工程中卷积法计算轨迹灵敏度的结果具有较高参考性。
Based on the single-machine infinite bus system, the validity of trajectory sensitivity calculation by convolution method is deeply analyzed, which provides support for using wide area measurement system to calculate the trajectory sensitivity and improves the level of dynamic safety analysis in power system. Theoretical analysis shows that, the relationship between the track sensitivity and the track will not change by changing generator models. Dynamic simulation is carried out on the basis of theoretical analysis. The simulation results show that different models can simulate the almost consistent dynamic track. The above research shows that the convolution method for calculating the track sensitivity is not affected by the system model. An index is established to evaluate the accuracy of the convolution method for calculating the trajectory sensitivity. By changing the generator model, the disturbance amount and the initial operation state, the dynamic simulation trajectory is traversed. The results show that the convolution method for calculating the trajectory sensitivity in the single-machine infinite bus system has high reliability, the results of convolution method for calculating the trajectory sensitivity in the actual engineering are of high reference value.
关键词(KeyWords):
轨迹灵敏度;卷积法;数值仿真;有效性
trajectory sensitivity;convolution method;numerical simulation;validity
基金项目(Foundation): 教育部“长江学者和创新团队发展计划”项目(IRT1114);; 吉林市科技发展计划项目(201162503);; 东北电力大学博士科研启动基金项目(BSJXM-201013)
作者(Author):
冯治,安军,韩磊,沈清野
FENG Zhi,AN Jun,HAN Lei,SHEN Qingye
DOI: 10.19585/j.zjdl.202308007
参考文献(References):
- [1]孙元章,杨新林.电力系统动态灵敏度计算的伴随方程方法[J].电力系统自动化,2003,27(3):6-12.SUN Yuanzhang,YANG Xinlin.Adjoint equation method for dynamic sensitivity calculation of power system[J].Automation of Electric Power Systems,2003,27(3):6-12.
- [2] HISKENS I A.Nonlinear dynamic model evaluation from disturbance measurements[J]. IEEE Transactions on Power Systems,2001,16(4):702-710.
- [3]周鲲鹏,陈允平.运用轨迹灵敏度的电力系统动态安全控制[J].电网技术,2003,27(12):46-50.ZHOU Kunpeng,CHEN Yunping.Dynamic security control of power system using trajectory sensitivity[J].Power System Technology,2003,27(12):46-50.
- [4]吴政球,荆勇.基于时域仿真的暂态稳定裕度灵敏度分析[J].中国电机工程学报,2001,21(6):19-24.WU Zhengqiu,JING Yong. Sensitivity analysis of transient stability margin based on time domain simulation[J].Proceedings of the CSEE,2001,21(6):19-24.
- [5] WU Zhengqiu,JING Yong. Transient stability sensitivity based on time domain simulation[J]. Proceedings of the CSEE,2001,21(6):19-24.
- [6] BENCHLUCH S M,CHOW J H.A trajectory sensitivity method for the identification of nonlinear excitation system models[J]. IEEE Transactions on Energy Conversion,1993,8(2):159-164.
- [7]朱方,汤涌,张东霞,等.发电机励磁和调速器模型参数对东北电网大扰动试验仿真计算的影响[J].电网技术,2007,31(4):69-74.ZHU Fang,TANG Yong,ZHANG Dongxia,et al.Influence of excitation and governor model parameters on simulation of large-disturbance test in northeast China power grid[J].Power System Technology,2007,31(4):69-74.
- [8]童晓阳,王睿,孙明蔚.基于保护元件与PMU数据多源的广域后备保护算法[J].电力系统自动化,2012,36(14):11-16.TONG Xiaoyang,WANG Rui,SUN Mingwei.Wide-area backup protection algorithm based on multi-source data of protection elements and phasor measurement units[J].Automation of Electric Power Systems,2012,36(14):11-16.
- [9]房大中,秦益飞.应用轨迹灵敏度计算临界切除时间新方法研究[J].中国电机工程学报,2005,25(14):7-11.FANG Dazhong,QIN Yifei.A new trajectory sensitivities approach for CCT assessment[J]. Proceedings of the CSEE,2005,25(14):7-11.
- [10]常乃超,陈得治,于文斌,等.基于受控微分-代数系统灵敏度分析的紧急控制[J].电力系统自动化,2003,27(17):19-22.CHANG Naichao,CHEN Dezhi,YU Wenbin,et al.Emergency control based on sensitivity analysis of controlled differential-algebraic systems[J]. Automation of Electric Power Systems,2003,27(17):19-22.
- [11] LAUFENBERG M J,PAI M A.A new approach to dynamic security assessment using trajectory sensitivities[J].IEEE Transactions on Power Systems,1998,13(3):953-958.
- [12] HISKENS I A,PAI M A.Trajectory sensitivity analysis of hybrid systems[J].IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2000,47(2):204-220.
- [13]马进,王景钢,贺仁睦.电力系统动态仿真的灵敏度分析[J].电力系统自动化,2005,29(17):20-27.MA Jin,WANG Jinggang,HE Renmu.Sensitivity analysis of power system dynamic simulation[J].Automation of Electric Power Systems,2005,29(17):20-27.
- [14] KOSTEREV D N,TAYLOR C W,MITTELSTADT W A. Model validation for the August 10,1996 WSCC system outage[J].IEEE Transactions on Power Systems,1999,14(3):967-979.
- [15] HISKENS I,AKKE M.Analysis of the Nordel power grid disturbance of January 1,1997 using trajectory sensitivities[J]. IEEE Transactions on Power Systems,1999,14:987-994.
- [16]贺春,任春梅.相量测量单元综合矢量误差指标分析[J].电力系统自动化,2012,36(4):110-113.HE Chun,REN Chunmei.An analysis of total vector error limit to phasor measurement unit[J].Automation of Electric Power Systems,2012,36(4):110-113.
- [17]刘洪波,穆钢,严干贵,等.根据量测轨迹计算轨迹灵敏度的卷积法[J].电力系统自动化,2007,31(5):13-17.LIU Hongbo,MU Gang,YAN Gangui,et al.A convolution method for calculating the trajectory sensitivity based on measured trajectory[J].Automation of Electric Power Systems,2007,31(5):13-17.